ON THE TOPOLOGY OF SUMS IN POWERS
OF AN ALGEBRAIC NUMBER

NIKITA SIDOROV AND BORIS SOLOMYAK

ABSTRACT. Let 1 < ¢ < 2 and

n
Ag) = {Zaqu | ar € {-1,0,1}, n > 1}.
k=0

It is well known that if ¢ is not a root of a polynomial with coefficients
0,41, then A(qg) is dense in R. We give several sufficient conditions for
the denseness of A(g) when ¢ is a root of such a polynomial. In particular,
we prove that if ¢ is not a Perron number or it has a conjugate o such
that qa| < 1, then A(g) is dense in R.

1. INTRODUCTION AND AUXILIARY RESULTS

Let g € (1,2) and put

An(Q) = {zn:aqu | ax € {_1v0’ 1}} )

k=0

and A(q) = U,,»; An(q). (It is obvious that the sets A, (¢) are nested.) The
question we want to address is the topological structure of A(g). Is it dense?
discrete? mixed?

The first important result has been obtained by A. Garsia [11]: if ¢ is a
Pisot number (an algebraic integer greater than 1 whose conjugates are less
than 1 in modulus), then A(g) is uniformly discrete. On the other hand, if
q does not satisfy an algebraic equation with coefficients 0,41, then it is
a simple consequence of the pigeonhole principle that 0 is a limit point of
A(q) and thus, it is dense — see below.

Surprisingly little is known about the case when ¢ is a root of a poly-
nomial with coefficients 0, +1. In this paper we study this case and give
two sufficient conditions for A(g) to be dense. These conditions are rather
general and cover a substantial subset of such ¢’s — see Theorems 2.1 and
2.4.
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Yo(q) = {Z arg® | ai, € {0, 1}}

and Y (q) = U, >, Yu(q). The set Y (q) is discrete and we can write its ele-
ments in the ascending order:

Y(q) ={0=wolq) <w1(q) <wale) <...}.
Following [10], we define

I(q) = lim (yn+1(q) — yn(q))-

n—~oo

Theorem 1.1. ([6]) If 0 is a limit point of A(q), then A(q) is dense in R.

It is obvious that 0 is a limit point of A(q) if and only if [(¢) = 0. Hence
follows

Corollary 1.2. The set A(q) is dense in R if and only if I(q) = 0.

The purpose of this paper is to find some wide classes of algebraic g for
which [(q) = 0.
Put for any § € C,

Y,.(06) = {Zn:akﬁk |ap €{0,1}, 0 <k < n}
k=0

and z,(3) := #Y,,(3). It is obvious that z,(3) < 2.

In order to estimate z,(3), it is useful to consider the set

Ay = {Zalﬁ\k‘ ay € {0’1}7 k> ()}, where A\ = ﬁ*l.

k=0

This is a well-known family of self-similar sets for A in the open unit disc,
most of them “fractals,” studied in [2, 12, 17], and many other papers (see
also the book [1, 8.2]). Observe that A, is compact.

Lemma 1.3. (i) If A € C, with |\ € (3,1), then z,(\) = #Y,(A) >
A7 for all n.
(i) If A € C, with 272 < |\ < 1, and [ReA| < [A]> — 1, then z,()\) >
N2+ for all n.

Proof. By the definition of the set Ay, we have for all n > 0:
(1.1) A= | +amay).

2€YR(X)

(i) Suppose that the set A is connected, and let u,v € Ay be such that

lu — v| = diam(A,). Then there exists a “chain” of distinct subsets A; :=



ON THE TOPOLOGY OF SUMS 3

2+ A"Ay C Ay, 7 =1,...,m, with z; € Y,,(\), such that u € A;,v € A4,
and A; N A1 # 0 for all j < m — 1. Therefore,

diam(Ay) <) diam(A;) = m - diam(\""' A,)
j=1

< #Yn()\)\)dnﬂdiam(A,\),

and the claim follows. If, on the other hand, A, is disconnected, then AA, N
(M + 1) = 0, see [2] or [1, Chapter 8.2]. In this case A is not a zero
of a power series with coefficients {0, £1}, much less a polynomial, hence
Zn(A) = 27 > | \[7"7! for all n.

(ii) We know from [17, Prop. 2.6 (i)] that A, has nonempty interior for all
A in the open unit disc, such that 0 < |[Re | < |A\? — 0.5. Then we have
from (1.1) for the Lebesgue measure £2:

L(Ay) < #Y,(NLAATAY) = 2,(N) - [APCFIL2(A)Y),
as desired. O

Note that the proof of Lemma 1.3 did not use that A is non-real. Hence

we obtain the following result as a direct corollary:
Lemma 1.4. If q € (1,2), then z,(+q) > Cq" for some C' > 0.

Remarks 1.5. (i) Lemma 1.4 for +¢ was proved in [10], using the fact
that ¥,+1(q) — yn(q) < 1 for all n and any ¢ € (1,2).

(ii) With a bit more work one can show that in the setting of Lemma 1.3 (i)
we have z,(\) > C,|\|~™ for some C,, T 0o, assuming that A is non-
real. However, it is not needed in this paper.

(iii) It follows from the results of [5, 13] that for any ¢ # 0,7, the set
Ay has nonempty interior for A\ = re®, with r sufficiently close to
1, but it seems difficult to apply them in the absence of quantitave

estimates.
Lemma 1.6. If § € C\ {0}, then z,(8) = z,(1/0).

Proof. Define ¢ : Y, (8) — Y,(1/73) as follows:

¢ (Z ak5k> = Z anfk(l/ﬁ)k'

Arelation Y} ap8" = >"1_, biS* is equivalent to >, ap 8" =S bpSF
which is in turn equivalent to ¢ (};_, ar3*) = ¢ (34—, bkB*). Thus, ¢ is a
bijection. O
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Lemma 1.7. Let g € (1,2); if z,(q) > ¢" (i.e., sup,, ¢ "2z,(q) = +0), then
I(q) = 0.

Proof. Since >")_,arg” < ¢"™* /(g —1), the result follows immediately from
the pigeonhole principle. O

Consequently, if ¢ is not a root of a polynomial with coefficients 0, £1,
then 2,(q) = 2", and I(q) = 0 (which is well known, of course — see, e.g.,
6]). If ¢ is such a root, it is obvious that z,(¢) < 2", and the problem
becomes non-trivial. It is generally believed that [(q) = 0 unless ¢ is Pisot,
but this is probably a very tough conjecture.

2. MAIN RESULTS

We need some preliminaries. Put

L(q) = T (yn11(q) = yu(a)).

n

Note that L(q) = 0 is equivalent to y,+1(q) — yn(q) — 0 as n — oo. This
condition was studied in the seminal paper [10]; in particular, it was shown
that if ¢ < 2Y/* ~ 1.18921 and ¢ is not equal to the square root of the
second Pisot number ~ 1.17485, then L(q) = 0. It was also shown in the
same paper that L(v/2) = 0.

It is worth noting that the two conditions I(¢) = 0 and L(q) = 0 are,
generally speaking, very different in nature; for instance, as we know, [(q) =
0 for all transcendental ¢, whereas L(q) = 1 for all ¢ > %5 (see, e.g., [9])
and no ¢ € (\/5, %g) is known for which L(q) = 0.

Throughout this section we assume that ¢ € (1,2) is a root of a polyno-
mial with coefficients 0, +-1. It is easy to show that in this case any conjugate
of q is less than 2 in modulus.

Finally, recall that an algebraic ¢ > 1 is called a Perron number if each
of its conjugates is less than ¢ in modulus.

Theorem 2.1. If g € (1,2) is not a Perron number, then l(q) = 0. If, in
addition, ¢ < /2 and —q is not a conjugate of q, then L(q) = 0.

Proof. We first prove [(q) = 0. We have three cases.

Case 1. ¢ has a real conjugate p and ¢ < |p|. Since p is an algebraic
conjugate of ¢, it follows from the Galois theory that the map ¢ : Y, (¢) —
Y, (p) given by ¥ (31 aiq") = Yoi,ap', is a bijection. Hence z,(q) =
zn(p) > C|p|™ by Lemma 1.4 and z,(q) > ¢". Now the claim follows from

Lemma 1.7.
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Case 2. ¢ has a complex non-real conjugate p and ¢ < |p|. This case is
similar to Case 1: z,(q) = z,(p) > C|p|™ by Lemma 1.3 (i) and z,(¢) > ¢".

Case 3. ¢ has a conjugate p and g = |p|. Let f denote the minimal polyno-
mial for ¢. Then we have f(x) = g(2™) for some m > 2 by [4]. Put 5 = ¢™.
We have

Yor(q) = {ag + a7 + axfBm + -+ + 3" | a; € {0,1}}

= {41+ 87 Ag + BF Ay 4 BT A | A1 € Yi(8), Ai € Vea(8), 20 <m.
Observe that any relation of the form

Ay + B Ay 4o 4 B Ay = A, + B Ay + -+ B A

implies A; = A},..., A, = A/, Indeed, if ¢ satisfies an equation By +
qBy + ... + ¢"'B,, = 0 with B; € Z[¢™], then ge?>™/™ satisfies the same
equation for 7 = 1,...,m — 1, hence B; = 0 for all 7. Thus, zmk(ﬁ%) =
2(8) - (za (B) .

Now, if ¢ > 2w, then 8 > 2, so z(8) = 2¢", and we obtain from
the above argument that z,(q) > C2" > ¢". Otherwise z,(q) > z,(8) >
CB" > ¢". Hence by Lemma 1.7, I(q) = 0.

Let us now prove the second part of the theorem. Suppose ¢ < v/2 is not
Perron and —q is not its conjugate; then ¢ has a conjugate o # —¢q, with
|a| > g. Thus, ¢* has a conjugate o2, and |a]? > ¢* with a? # ¢* If |a| >
V2, then a? (and, consequently, ¢?) is not a root of —1,0,1 polynomial.
Otherwise, we can apply the first part of this theorem to ¢2. In either case,
I(¢*) = 0, whence by [9, Theorem 5], L(q) = 0. O

Remark 2.2. Stankov [18] has proved a similar result for the following set:

(21) A(Q) = {Z aqu ‘ ap € {—1, 1}, n > 1} .

More precisely, he has shown that if A(q) is discrete, then all real conjugates
of ¢ are of modulus strictly less than q.

Corollary 2.3. If ¢ € (1,2) is the square oot of a Pisot number and not
itself Pisot, then l(q) = 0.

Proof. If ¢ = v/ and 3 is Pisot, then either —¢q is a conjugate of ¢ or ¢ is
Pisot. Il

Theorem 2.4. (i) Suppose q € (1,2) has a conjugate o such that
lalg < 1. Then l(q) = 0 and, consequently, A(q) is dense in R.
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(il) Suppose q € (1,2) has a non-real conjugate o such that |a|qg = 1.
Then I(q) = 0.

If, in addition, ¢ < \/2 in either case, then L(q) = 0.

Proof. (i) As above, we have z,(¢q) = z,(«). On the other hand, by Lemma 1.6,
zZn(@) = z,(1/a), and by Lemmas 1.4 and 1.3, z,,(1/a) > C-(|1/c|)™. Hence
zn(q) > C-(|1/a])™ > ¢", in view of |ag| < 1. Hence by Lemma 1.7, I(¢) = 0.

If ¢ < v/2, then ¢? has a conjugate a2, and ¢?|a|? < 1. Hence I(¢?) = 0,
whence L(q) = 0.
(ii) Denote oy = ¢q,a2 = «, and a3 = @. Since |aj¢ = 1 and « is non-
real, we have three conjugates satisfying a?asasz = 1. Smyth [16, Lemma
1] characterizes such situations, but it is easier for us to proceed directly.
The Galois group of the minimal polynomial for ¢ is transitive, so there is
an automorphism of the Galois group mapping a; to as. We obtain that
a%aiaj = 1 for some distinct conjugates o; and «; of ;. But this implies
max{|l, |a;|} > a1 = ¢, hence ¢ is not a Perron number, and [(q) = 0 by
Theorem 2.1.

If ¢ < v/2, then ¢?|o?| = 1, and the first part of (ii) applies to ¢, unless
o? € R. If this is the case, then oo = 4-i/q, whence the minimal polynomial
for ¢ contains only powers divisible by 4. Hence the minimal polynomial for
¢* contains only even powers, which implies that —¢? is conjugate to ¢2,

whence ¢* is not Perron, and I(¢?) = 0. O

Remark 2.5. If |a|qg = 1 and « is real, we do not know if [(¢) = 0. In fact, this
includes the interesting (and probably, difficult) case of Salem numbers®.

Definition 2.6. We say that an algebraic g > 1 is anti-Pisot if it has only
one conjugate less than 1 in modulus and at least one conjugate greater
than 1 in modulus other than q itself.

Corollary 2.7. If ¢ € (1,2) is a oot of a —1,0,1 polynomial and is also
anti-Pisot, then l(q) = 0.

Proof. Let @ = «ay,a0,...,a,_1,q be all the conjugates of q. We have
k—1
‘Hj:l Q;

0,£1, whence its minimal polynomial must have a constant term =+1.

-q = 1, because ¢ satisfies an algebraic equation with coefficients

Suppose || < 1; then it is clear than « € R (since it is unique). If |ag| > 1
and |ay] > 1 for j = 3,...,k — 1, then it is obvious that |a|g < |as|™! < 1,
i.e., the condition of Theorem 2.4 (i) is satisfied. O

'Recall that an algebraic number ¢ > 1 is called a Salem number if all its conjugates
have absolute value no greater than 1, and at least one has absolute value exactly 1.



ON THE TOPOLOGY OF SUMS 7
3. EXAMPLES

Example 3.1. Let ¢ ~ 1.22074 be the positive root of 2* = x 4+ 1. Then
g has a single conjugate o ~ —0.72449 inside the open unit disc and no
conjugates of modulus 1, whence ¢ is anti-Pisot, and by Corollary 2.7, [(q) =
0. Furthermore, ¢ < v/2, whence L(q) = 0 as well.

Note that ¢ > 2%, so we cannot derive the latter claim immediately
from [10, Theorem IV].

Example 3.2. An example of ¢ with a real conjugate o which is not anti-
Pisot but still satisfies the condition of Theorem 2.4 (i), is the appropriate
root of 2° = z* + 22 + 2 — 1. Here ¢ ~ 1.52626 and o ~ 0.59509.

Example 3.3. For the equation 2° = 2* — 22 + x + 1 we have ¢ ~ 1.26278
and |o| &~ 0.74090 so |a|g ~ 0.93559 (and « ¢ R). By Theorem 2.4 (i),
L(q) =0.

Example 3.4. For the equation 21 = 2%+ 28+ 2" +254+-2° -2t — 23— 2?4+ 21
we have ¢ &~ 1.52501. Among its conjugates is a ~ 0.3741 + 0.52404:¢ with
la| =~ 0.64387 < 1/q = 0.65574, so again [(q) = 0 by Theorem 2.4 (i). Note
that ¢ > v/2 so we cannot claim L(q) = 0.

Example 3.5. The following example illustrates Theorem 2.4 (ii). Let ¢ ~
1.19863 be the largest root of #1? = 2% + 2% + 23 — 1; then a = (¢! is a
root of this equation as well, where ( is any complex non-real cubic root
of unity. Hence ¢|a| = 1, and Theorem 2.4 (ii) applies, i.e., L(q) = 0. Note
that ¢ = /3, where (3 is a quartic Salem number.

Example 3.6. For the equation 2!t = 20 + 2% — 2% + 2% — 22 — 1 we have
g ~ 1.5006. Among its conjugates is A\ ~ 0.02625 4 0.7414i. Theorem 2.4
does not apply, but we can use Lemma 1.3 (ii) to obtain

20(q) = 2o (N) > A2 & 1.81696™ ! > ¢,

which implies that [(¢) = 0. Note that Lemma 1.3 (ii) applies, because
0.02625 ~ Re A < |A|* — % ~ 0.05037.

Example 3.7. Consider the equation z'® = —z1642M 42" 42194 .. 42 +1
(no powers missing between z'° and 1). It has a root ¢ ~ 1.22289, and the
largest in modulus conjugates are u,u approximately equal to —.03958 +
1.3109i. Then Theorem 2.1 implies L(q) = 0.

It is worth mentioning that there is another way to obtain this result.

Consider ¢2 and its conjugates u?, u%. We claim that although |u?| < 2, u?,
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and hence ¢2, is not a zero of a —1,0, 1 polynomial (whence [(¢*) = 0, which
implies L(q) = 0).

Indeed, if it were, then ¢ =2 u=2, (u)~>

would also be zeros of such a
polynomial. However, the product of these three numbers is ~ 0.226024, so

this is impossible, in view of the following

Claim. Suppose z1, 2o, 23 are three different roots of a —1,0,1 polynomial.
Then |21 2023 > 1/2 - (4/3)73/% = 0.32476 . ..

This claim is a slight generalization of [3, Theorem 2], see [15, Theorem
2.4].

Example 3.8. Finally, an example of ¢ for which none of our criteria works
is the real root of 2° = 2* + 2° — 2 + 1. Here ¢ ~ 1.54991, and the other
four conjugates are non-real, with the moduli ~ 1.04492 and ~ 0.76871
respectively.

Another example is any Salem number ¢ € (1,2), for instance ¢ ~
1.72208 which is a root of z* = 23 + 2% + x — 1. (Which is of course none
other than # from Example 3.5.)

4. FINAL REMARKS AND OPEN PROBLEMS

4.1. Our first remark concerns the case ¢ € (m, m + 1) with m > 2. Here
the natural definition for A(q) is

Aq) = {Zaqu |ag € {—m,—m +1,...,m—1,m}, n> 1}.

k=0
Theorem 2.4 holds for this case, provided @ € R (as well as Case 1 of
Theorem 2.1)— the proof is essentially the same. The case of non-real « is
less straightforward, since there is no ready-to-apply complex machinery for
m > 2. (Basically, we need that if « is a zero of a polynomial with coefficients
in {—m, ..., m}, then the attractor of the iterated function system {az +
Ji };.”:0 in the complex plane is connected. This can be verified for m = 2,3
but we do not know if this is true in general.) Note also that an analogue

of Theorem 1.1 for m > 2 has been proved in [7].

4.2. We do not know whether the extra condition that —q is not a conjugate
of q is really necessary in the second claim of Theorem 2.1. In particular, is
it true that L(,/¢) = 0 if ¢ is the golden ratio?

4.3. In [14, Proposition 1.2] it is shown that if ¢ < v/2 and ¢? is not a root
of a polynomial with coefficients 0, £1, then the set .A(q) given by (2.1) is

dense in R. In fact, what the authors use in their proof is the condition
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I(¢*) = 0. Consequently, Theorems 2.1 and 2.4 provide sufficient conditions
for A(q) to be dense in case when ¢* does satisfy an algebraic equation with
coefficients 0, £1.

4.4. Is l(q) = 0 for ¢ in Example 3.8 and suchlike?

4.5. All our criteria yield that I(¢) = 0 implies L(g) = 0 for ¢ < v/2. Is this
really the case?

Acknowledgement. We are grateful to Martijn de Vries for indicating the
papers [6, 7].
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