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Abstract

A new stochastic fractal model based on a fractional Laplace equation is de-
veloped. Exact representation for the spectral and correlation functions under
random boundary excitation are obtained. Randomized spectral expansion is
constructed for simulation of the solution of the fractional Laplace equation.
We present calculations for 2D and 3D spaces for a series of fractional parame-
ters showing a strong memory effect: the decay of correlations is several order
of magnitudes less compared to the conventional Laplace equation model.

1 Introduction

The fractal concept in cosmography is based on the assumption that the Universe reveals
a spatial self-similarity with respect to scale, known also as scaling [14]. This concept in
a sense extends the homogeneity. Clearly, an infinite homogeneous medium possesses the
scaling property since it is homogeneous at all scales. However there exist non-homogeneous
self-similar systems, called fractals, where more and more structures appear at larger scales
in a self-similar way so that all the structures are similar to the one at small scales. The
next step in the generalization of the fractal idea is the definition of a random fractal [12].
It is introduced by the concept of a probability density function (pdf) characterizing the
fluctuations of a spatial structure, e.g., the density of mass. The fractality in this case is
treated via a stochastic similarity of structures, so for instance when analyzing random
fractals of a set of points, one assumes that a normalized number of objects in a volume
has the same pdf at all distances, and all points are statistically equivalent, while the
mean number of objects in a ball of radius R is proportional to R” where D is a fractal
dimension. There are a few estimates of the fractal dimension of the Universe, all of them
lie between 2 and 3.

The mean density of stochastic fractals is postulated to have a power asymptotic, f(x) =
ArP=3 where A is some normalizing constant, and r is the distance to some fixed point
(say, a mass center”) of the fractal. Applying a Fourier transform to f(x) one can find that
the mean density satisfies a fractional Laplace equation (e.g., see [14], [12], [21]):

(=A)P2f(x) = Apd(x), xe€G=R" (1)

with Ap = 4n T'(D — 1) | cos(wD/2)|, where I'(+) is the Euler I'-function. This equation
implies that f(x) is a fundamental solution of the fractional Laplace equation. It should
be noted that this function is often called a Green function even if GG is not the whole
space (e.g., say, [15], [25]) say, a half-space R, which leads to misunderstanding between
physicists and mathematicians, because, in mathematics, in addition to (1), the Green
function should satisfy a boundary condition, say, in the case of a Dirichlet boundary



conditions, f|apg = 0. One might be interested to define uniquely the Green function from
(1) and the boundary condition, by analogy to the classical Laplace equation, but here we
face a difficulty related to the fact that the pseudo-differential equations (like (1)) are of
non-local type, and the theory of existence and uniqueness of boundary value problems is
not developed yet (e.g., see [15], [2], [4])-

In this paper we undertake a different approach, which defines a fractional Green function
for the half-space with a given Dirichlet boundary condition via an extension in a fractional
space. This enables to uniquely define the Green function, and to evaluate explicitly the
correlation function of the solution in response to the stochastic white-noise fluctuations
on the boundary. The derivation is based on a generalized Poisson formula for the half-
space. We construct also simple Monte Carlo simulation formulae of the random solution
itself which opens new possibilities in studying more complicated statistical characteristics
like many point statistical moments, and the probability that the solution exceeds a fixed
critical level. We mention in conclusion that the stochastic correlation analysis of PDEs
with random boundary conditions is used in different fields of science and technology, for
instance, flows in porous media [9], [18], turbulence [5], [10], diffusion and transport [23],
[22], elasticity and elastography [13], [19], [20], and many others (e.g., see the bibliography
in [7] and [19]). The present paper is the first study extending this approach to a stochastic
fractional PDE, with the relevant applications to stochastic fractal models.

1.1 Fractional Laplacian
Suppose we are given a smooth bounded function R" — R to be extended smoothly to
the space R™ x (0, 00) so that

Au(x,y) =0, xe€R", y>0,u(x,0) = f(x), xeR". (2)
The fractional Laplacian of a function f : R™ — R is defined as follows (e.g., see ([3], [25]):

(—A)* F(x) = Cus / Jx !n+2s ) ¢ (3)

where the parameter s is a real number between 0 and 1, and C), s is some normalization
constant.

This definition can be replaced with the definition commonly used in treating the pseudo-
differential equations using the Fourier transform [24]

(ZA)° f(k) = | Fk)
Here the Fourier transforms f(x) = F[f](x) and f(k) = F~[f](k) are related by
fio = [ 2 0W py i, f0 = [ 309 1ok
R" R"

The fractional Laplacian is also defined in a distributional sense for functions that are not
differentiable as long as f is not too singular at the origin, i.e., provided

|f(x)]
/ 7(1 n |X|)n+25 dx < oo .
Rn



The relation of the fractional Laplacian to the above extension problem (2) is suggested
in [3| on the basis of the following arguments. The derivative —u,(x,0) can be formally
identified with (—A)Y/2f(x), hence the operator T': f — —u,(x,0) can be considered as a
realization of (—A)'/2 f(x). This is easy to show by applying the operator T twice. First,
replacing the Dirichlet condition f with —u,(x,0) we obtain —u,(x,y) instead of u as the
solution of the problem (2). Then,

T(T(f)(x)(x) = T(—uy(x,0))(%) = uyy(x,0) = =Ax f(x) -
Thus to show that T'= (—A)l/ 2 it remains only to mention that T is a positive operator
which is easy to check by a simple integration by parts.
An analogous extension problem for fractional Laplacians is formulated as follows.

For a function f: R™ — R, we consider the extension u : R" x [0,00) — R that satisfies
the equation

a
Axu + Zuy + Uyy = 0, u(x,0) = f(x) . (4)
The equation (4) can also be written as
div (y*Vu) =0.

This in turn is the Euler-Lagrange equation for the functional

J(u) = / 'V ul?y® dx dy .
y>0

To obtain a fundamental solution to (4), we introduce the notation X = (x,y) and consider
the fundamental solution in n + 1 + a dimensions. For n — 1 +a > 1 we know that (e.g.,
see [3]):

1

ga(X) - Cn—l—l—l—aW

where the constant C, 111, is defined by C}, = 7%/2T'(k/2—1)/4. For n = 1, the logarithmic
function should be taken. By direct evaluations we can see that £ is a solution of (4) when
y # 0, and lim,_,g+ y®*u, = —C0(0) for some constant C', hence &,(x,0) = W’%*“ is the

fundamental solution of the fractional Laplace (—A)PTG for some appropriate constant C'
depending on n and a.

Thus the above extension problem (4) is related to the fractional Laplacian as follows (up
to a constant factor):

liy ) = ~(-A)° £ = [ 20T 8 de.
i

This can be shown using the Poisson integral formula which gives the exact representation
of the solution of the extension problem (4):

u(x,y) = / Pu(x — £,/ (€) dé (5)
s



where the Poisson kernel P, must be a solution to (4) where y > 0 and lim, g P, (x,y) =
5(0), so the correct choice is P,(x,y) = —y~*0,Eq(x,y), hence,

l—a

Y
n+1l—
(kx> +1y[?) 2

The normalizing constant C,, , is chosen to be consistent with the dimension of the problem
so that [ P,(x,y)dx = 1. We will show in the Theorem below that

Pa(X, y) = Cn,a

Rn
T n+l—a l—a T n+l—a
Cn,a = (n+?7a ) X 7Tlia = E( 21* ) ’
Tt P(5%)  7m2T(59)

2 Boundary white noise

Suppose the given boundary function f(x) is a homogeneous random field with its corre-
lation function By(x —x1). We are interested in the structure of the correlation function
of the solution B, (X1, X2) = (u(X1)u(X2)). Recall that we use the notation X = (x,y).

Let us start with the case when f is a zero mean Gaussian white noise, with By = §(x2—x1).

Theorem. The random field u(X), X € (R" x [0,00)) solving the equation (4) with the
Gaussitan white noise f is partially isotropic, that is, its correlation function depends on
r = |x1 — Xa|, and on y1,ya. It is uniquely defined by its correlation function which has
the form

n—a—1 n—a—1

1
t 1-t dt
By (X1, X2) = Cf , A(y1, 92 / ) THia (6)
J (Y2t +y3(1 —t) + t(1 — t)[x1 — x2[2] 2
where /2 ( )
7T (2+1—a
Alyr,y2) = 2 =y Yy
[F(=2)]
The partial spectral function is explicitly given by

S(kiy1,y2) = C (KJyn) =" ([KJy2) = Ko (27 [K[y1) Ko (27[k]y2) (7)

where C' = 213" =), and K, (z) is the modified Bessel function of the second kind,
also known as the Macdonalds function (e.g., see [8]): K, (z) =5 I”.*I”(Z)), where I,(z) =

2 sin(vm
i”J,(iz) is the modified Bessel function in turn defined via J,,, the Bessel function of a pure

mmaginary argument iz.

The random field u(x,y) has the following Randomized Spectral approzimation:

(kly) =" Ko ~a (27 [K]y) .
u(x,y) = Vix,y) =C (k) [€ cos(27k - x) + nsin(27k - x)] (8)
p
where k is a random vector in R" distributed with a density p(k) which can be chosen quite
arbitrarily, satisfying the condition p(k) # 0 if Ki-a (|k|y) # 0, and &, n are independent
2
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standard Gaussian random variables. Since the random field is isotropic, it is convenient
to choose k = kw where w is a random unit isotropic vector in R", and k = |Kk| is a

n—1

random variable distributed in (0,00) with a density FQ(Z/Z) p(k)&""*. The approzimation

u(x,y) = V(x,y) means that the correlation functions of u(x,y) and V(x,y) coincide, and
moreover, a sum of N independent realizations of V(x,y) converges to the solution u(x,y),
as N — o0.

Proof. Let us first show that (6) is true. By (5) we get

B, (X1, X2) = (u(x1,y1)u(x2,y2))
N / /P( —&,y1)Pa(x2 — &, y2)(f(£) (&) d€ d€’

R'R"
l—a  1—a
d
2, v & - (9)

_ g2 9\ "¢ 2 2\ "3
pr (X — &P+ [ml?) (Ix2 — &2 + [y2]?)

nfafl n—a—1

1
(1—1) dt
:CVQL,G,A ylayQ / +17a
J t—i—le—t)—l—tl—t)]xl—xQ]]

where )
" F(% +1- a) 1-a l-a

“av2 N Y2
r(=5=2)]
Here we first changed the product of the velocities by a double integral, substituted the

delta-correlation function, while the step from (9) to (10) is done by using n-dimensional
polar coordinates, see [16], p. 594, 7.

A(yn?ﬂ) =

Now let us prove (7). Note that the correlation function is written in (9) in the convolution
form

By(x1,y1;%2,Yy2) = Pa(-,y1) * Pa(- — (x1 — X2),42) - (11)

To derive the partial spectral density we take the inverse Fourier transform F~![-] of both
sides of 11) and use the Fourier transform property for convolutions. This yields:

S(kiy,y2) = F Pl y)](ky) FHPa( y2)](kyy2) - (12)

The inverse Fourier transform F~1[P,] can be calculated explicitly using the integral cited
in [5], p. 155 (see also [1]:

P ] =y K pOmylKl) . (13)
(y? +[x[?) = r(3%)
From this we find by a = a — 1 that
l1—a
1 T 2
FHP.(y)] =2 (k) =" K1 ~o (2my[k|) (14)

L(+3%)

which proves (7) in view of (12).



Note that the normalizing constant in (14) is obtained from the condition F =[P, (-, y)]|x=0 =
NG

1, taking into account that K, (z) — == e~ *. This yields the normalizing constant in (14).

V22
To prove that V' (x,y) has the same correlation function B, (X1, X2) it is enough to verify
by direct evaluation that the partial spectral function of V' (x,y) coincides with (7). Finally,
based on this fact, the convergence of a sum of independent realizations of V(x,y) to the
solution u(x,y) follows by the standard arguments of the weak convergence theorem (e.g.,
see [17] and the recent paper [11]). This completes the proof. O

3 General homogeneous excitations on the bound-
ary

The correlation function derived in the Theorem for the white noise boundary excitations
f =W can be used to obtain the correlation function for the general case of homogeneous
boundary excitations defined by a correlation function Bf(x). Indeed, let us denote by
quw)(x,yl,yg) and B (x,y1,y2) the correlation functions of the solution u(x,y) under
the white noise W and general homogeneous boundary excitations f(x), respectively. Then
starting again with (9) we obtain

B (x,y1,y2) = / BM")(x —x,y1,42) By(x') da’ .
Rn
From this we conclude by the convolution property of the Fourier transform that the
following convenient formula for the partial spectral function holds

Sk, y1,92) = ST (k, 51, 92) Sy (k) (15)
where the partial spectral function S&W)(k, Y1, y2) is given by (7), and S¢(k) is the spectral
function of the general boundary excitations f.

Note that the formula (15) is especially convenient in the Monte Carlo simulation of the
random field because the simulation formula of the type (8) involves only the spectral
function which in this case is explicitly given by (15).

4 Correlation function calculations

We show in Figure 1 the longitudinal correlation function in the upper half-space Ri_
(n = 2, left panel), and half-plane (n = 1, right panel), for different values of a, compared
with the case of Laplace equation. It is clearly seen that the decay of the correlation
function
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Figure 1: The correlation function By (x,y1,y2), versus the longitudinal coordinate x, for
fixed y; = 0.5 and y» = 1, for different values of a compared against the case of Laplace
equation a = 0. Left panel: the half space (n = 2); right panel: the half-plane (n = 1).

The curves are presented in the log-log coordinates.
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Figure 2: The correlation function B,,(0,y,y2) versus the transverse coordinate y, for fixed
yo = 0.2, for different values of a compared against the case of Laplace equation a = 0.
Left panel: the half space (n = 2); right panel: the half-plane (n = 1). The curves are
presented in the log-log coordinates.



B,, for a = 1,a = 1.2,a = 1.5 (as the longitudinal coordinate increases) is considerably
lower compared to the case of the Laplace equation when a = 0. This difference becomes
rapidly more dramatic as a increases. Note also that in the 3D case the correlations are
obviously decreasing much faster than in the case of a half-space. In Figure 2 we show
the transversal behavior of the same correlation functions. A comparison with the curves
presented in Figure 1 shows that the transverse decay of the correlations is considerably
slower than the longitudinal decorrelations. It is also to mention that the difference between
the fractional and Laplace equations is more pronounced when comparing the longitudinal
correlation functions.
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