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Abstract – It is well known nowadays, that packet 
network traffic has the self-similar nature [4], and 
conventional models, such as simple Markovian (memory-
less) models, have faults. Moreover, the self-similar 
structure of the traffic leads to a number of undesirable 
effects like high buffer overflow rates, large delays and 
persistent periods of congestion. This paper presents the 
basic concept of the theory of self-similar teletraffic, its 
relationship with non-linear dynamics and fractals. The 
paper also studies the problem of providing QoS in the 
presence of self-similarity from the point of view the 
traffic prediction technique. 
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I. INTRODUCTION  
 

Numerous researches of traffic of the computer 
network testify that it has the property of self-similarity 
[1]. Meanwhile, the methods of calculation of the 
computer network (capacity of channels, capacity of 
buffers, etc.) based on the Markovian models and the 
Erlang formulas, which are successfully used in design 
of telephone networks, give unfairly optimistic 
solutions and result in underestimation of load. 
Besides, the self-similar traffic has a special structure, 
which holds true on many scales – there are a number 
of very big spikes at relatively low average levels of 
the traffic. The phenomenon considerably worsens 
characteristics (magnifies the losses, delays and jitter 
of packets) as the self-similar traffic passes through 
network nodes. In this respect, the efforts of 
development engineers and telecommunications 
standardization committees should be aimed at 
studying the effect of the self-similarity of the traffic 
and creating new algorithms for its optimal processing. 
 This article is organized as follows: chapter II deals 
with an algorithm of processing the self-similar traffic. 
The algorithm is based on prediction and, according to 
the author, permits to lower losses and improve QoS 
characteristics. The third chapter treats the essence of 
the phenomenon of self-similarity, its link with the 
fractal structures, as well as the possible perspectives 
of prediction of the self-similar traffic from the point of 

view of the concepts of long memory, the Hurst 
exponent and heavy-tailed distribution. Chapter IV 
gives the results of the main features of the network 
traffic as interpreted in terms of non-linear dynamics. 
In particular, it is about two chaotic systems positioned 
as the models of the network traffic. This seems to be 
especially interesting, as it allows to closely approach 
the identification of the deterministic (possibly chaotic) 
component of the traffic. In chapter V, the author 
analyses the network traffic and compares it with the 
purely deterministic time series (the Lorenz chaotic 
system) and the purely random series (white noise) in 
terms of predictability. The final chapter draws major 
conclusions and suggests possible directions and 
perspectives of the further research to improve QoS 
characteristics under the conditions of the self-similar 
teletraffic. 
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II.  QOS THROUGH FORECASTING 
 

Prediction of network traffics [14], [15], [17], [18] 
is one of the most challenging and insufficiently 
studied directions, and is of interest in terms of 
telecommunications most diversified systems and 
algorithms. The main ideas in the given area are 
connected with application of prediction to improve the 
mechanisms of congestion control, network safety, 
optimization of algorithms of dynamic routing, 
development of the adaptive network applications, the 
management efficiency and development of the 
network, as well as the rise in productivity in 
processing of the traffic in network nodes. It is the last 
problem that this research deals with. The number of 
real time applications (videoconferencing, an ip-
telephony, etс.) with higher demands for the quality of 
network resources (packet delivery time, loss rate, 
jitter, free transmission range, etс.) has increased 
recently. Therefore, the provision of adequate quality 
of service attracts special attention. The author believes 
that the use of the prediction technique will allow 
solving a number of problems in this field. In fact, if 
we know the level of the traffic to pass through a 
certain network node at a certain moment of the future, 
we can try to process it most effectively (that is to 
improve quality of service characteristics). Let us 
consider two popular algorithms of providing QoS, 
representing the mechanisms of traffic regulation, 
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implemented by the leading telecommunications 
equipment company, Cisco Systems: Traffic Shaping 
(TS) and Traffic Policing (TP) [1]. As is clear from 
Fig. 1, the idea of these algorithms is as follows: TS 
smoothes the traffic and transfers it with a constant 
intensity, committed information rate (CIR), through 
queueing (buffering) packets with transmission rates 
exceeding the CIR; in its turn, the TP mechanism 
simply discards packets which intensity exceeds the 
CIR. On the one hand, as TS does not admit discarding 
packets, it becomes attractive for control over real time 
information communication (voice, real video). On the 
other hand, it brings buffering related delays, which 
has a negative effect on the characteristics of the 
transmitted traffic. To get rid of the above-mentioned 
disadvantages is enough to increase the bandwidth to 
the value of the maximum traffic spike, but a problem 
of low utilization (underexploitation of the bandwidth) 
will appear. Besides it is absolutely unacceptable in 
case of the self-similar traffic, as it always has a 
number of big enough spikes against the background of 
a relatively small average level, which is caused by 
heavy-tailed distribution (see below). However, the 
problem can have a solution  - bandwidth on demand. 

 
а) 

 
b) 

Fig. 1. Operating principles of traffic limitation mechanisms: Traffic 
Shaping (a) and Traffic Policing (b). 

 
That implies early warning of the network of the 

requirements to the bandwidth at a certain interval in 
the future. The operating principle of this algorithm is 
shown in Fig. 2. It is worth mentioning that, in an ideal 
case alongside with the absence of discarding and 
buffering of packets, this mechanism provides a high 
degree of utilization of the channel. It is easy to 
imagine a situation where application of such algorithm 
should be a success: two virtual channels share a single 
physical link under the conditions of the limited 
bandwidth.   

 Let us allow that the first virtual channel is 
designed to transmit information sensitive to QoS 
parameters (real time traffic) and, therefore, has high 
priority, and the second channel is, for example, for 
access to ftp and http resources. Then, giving a 
bandwidth to the real video traffic on demand, which 

provides the required QoS, we will worsen the 
characteristics of the second channel. 

 
Fig. 2. Operating principle of traffic prediction. 
 

However, that will be much less salient as http and 
ftp services are capable of working adequately under 
the conditions of big delays and losses of part of 
packets much due to the algorithm of guaranteed 
delivery of TCP protocol used on the network level, 
while real time network applications, as a rule, are 
based on UDP protocol, which has no such mechanism 
and, therefore, works faster (that justifies its use for 
these purposes). One of the realization principles of the 
method of bandwidth control with the help of traffic 
prediction [8] is shown in Fig. 3.  
  
 
 
 
 
 
 
 
Fig. 3. Realization principle of bandwidth adaptive control. 
 

The idea of this procedure is as follows: from the 
observational data X = {Xn-w...Xn-2, Xn-1, Xn} of the 
traffic, coming into the input buffer of a certain 
network node R, we predict the bandwidth Ypred = 
{Yn+d, Yn+d+1, … Yn+d+m} for d+m steps forward. Here, d 
– is the time necessary for generating the prediction, w 
– the length of the window. Before selecting a suitable 
algorithm of prediction of the network traffic we shall 
give the main results of research of its characteristic 
properties. 

 

III. FRACTAL PROPERTIES OR SELF-SIMILARITY OF 
NETWORK TRAFFIC 

 
The notion of fractal was first introduced by Benua 

Mandelbrot. The important property that almost all 
fractals have is the property of self-similarity (scale 
invariance). It seems the fractal can be divided into 
small parts so that each part appears simply a reduction 
of the whole. In other words, if we look at the fractal in 
a microscope, we shall see the same picture, as without 
a microscope! The fern shown in Fig. 4 is an example 
of a natural fractal object. In fact, most things in 
existence are not circles, squares or lines. Instead, they 
are fractals, and the creation of these fractals is usually 
determined by the equations of chaos. In this respect, 
application of the mechanism of the theory of non-

Prediction 
algorithm 

Ypred= {Yn+d, Yn+d+1, … Yn+d+m} R X= {Xn-w...  Xn-2, Xn-1, Xn} 

 
  2 
 



V. Petroff. Self-Similar Network Traffic: From Chaos and Fractals to Forecasting and QoS             NEW2AN, St. Peterburg, Russia 
 

linear dynamics (the theory of chaos) for research of 
the self-similar teletraffic also seems to be a most 
perspective direction and reasonable development of 
the ideas of fractal traffic. It is worth mentioning that 
the term of chaos means the word collocation 
deterministic chaos, however, in informal conversation 
the word deterministic is frequently omitted. In this 
respect, the principle of determinancy can have a 
potential of playing a significant role not only for 
prediction of the network traffic and many similar 
processes apparent random at first sight.  
 

 
Fig. 4. Fractal object: the fern 
 

Unlike deterministic 
fractals, stochastic fractal 
objects (processes) are 
described as a rule by scale 
invariance (self-similarity) 
of statistical characteristics 
of the second order (the 
property of invariance of a 
correlation coefficient at 
scaling). These are such 
stochastic fractals that we 
will come across while  

studying the characteristics of the network traffic. In 
this connection in the literature the notions of fractal 
and self-similar teletraffic are used as synonyms often. 
Let us give a definition of exactly second-order self-
similar process of discrete argument. 

A. Self-similarity 
 

Let Х=(Х1, Х2, …)  be a semi-infinite segment of a 
second-order-stationary stochastic process of discrete 

argument (time) . Let us designate 

through 

,...}2,1{Nt
∆
=∈

∞<µ  and  the average and the 
average of the process X accordingly, and through 

∞<2σ

2

_______________________

tkt )X)(X(
)k(r

σ
µµ∆ −−

= +
, 

...}2,1,0{Zk
∆
=∈ +  

- the autocorrelation function of the process X. As the 
process X is second-order-stationary, the average 

µ=]X[M , the dispersion , the 
correlation coefficient r(k) do not depend on time t and 
r(k)=r(-k). Let us allow [2] that the process X has the 
autocorrelation function of the following kind: 

2]X[D σ=

∞→− k),k(Lk~)k(r 1
β  (3.1) 

with 0<β<1 and L1  being the function slowly varying 
at infinity. Let us mark through   - 
the averaged on blocks of length m process Х, which 
components are determined by expression: 

,...)X,X(X )m(
2

)m(
1

)m( =

Nn,m),X...X(
m
1X tm1mtm

)m(
t ∈++= +−

∆
 (3.2) 

Hereinafter we will call the process X(m) - aggregated 
process. Let us mark the correlation coefficient of the 
process Х(m) through rm(k)  
Definition [2]. The process X is referred to as exactly 
second-order self-similar (es-s) with the parameter 
H = 1-(β/2), 0 < β < 1, if  

)k(r)k(rm = , k ...}3,2{m,Z ∈∈ +  (3.3) 
That is, the es-s process does not change its correlation 
coefficient after it is averaged on blocks of length m. In 
other words, X – es-s, if the aggregated process Х(m) is 
indistinguishable from the initial process X at least in 
terms of statistical characteristics of the second order.  
 

B. Long-range dependence and forecasting 
 

Let us consider one more notion having a key value 
in the theory of self-similar processes - long-range 
dependence (LRD). LRD describes the property of 
long memory [16] that is challenging in terms of 
prediction. At an intuitive level this property can be set 
forth as follows: the future of the process will be 
determined by its past, with a decreasing degree of 
influence as the past retreats from the present (that is 
the process with long memory a sort of forgets its 
relatively old past as time passes). Here come some 
definitions. 

Definition [2]. They say, that the process X has 
long-range dependence (LRD) if (3.1) is satisfied.  
Thus, the processes with LRD are characterized by the 
autocorrelation function that decreases hyperbolically 
(under the power law), as the time delay (lag) 
increases. 

Unlike the processes with LRD, processes with 
short-range dependence (SRD) have the following 
exponential decreasing autocorrelation function 

10,k,~)k(r k <<∞→ ρρ  (3.7) 
In frequency area LRD affects the characteristic 

power law of the behavior of the spectral density of the 
process. In fact, equivalently to (3.1) it is possible to 
state that the process X  has LRD if 

10,0),(L~)(f 2
1 <<→− βλλλλ β  (3.8) 

L2 is – a slowly varying in zero function, 

∑=
k

ike)k(r)(f λλ is a spectral density.  Thus, from 

the standpoint of spectral analysis the LRD process has 
a spectral density with a singularity in zero (i.e. the 
spectral density of f(λ) of such a process tends to 
infinity as frequency λ tends to zero). Such a process is 
frequently referred to as “1/f - noise” or “flicker-noise”. 

C. Heavy tailed distribution and forecasting 
 

Numerous measurements of the network traffic 
have shown that it best described by the so-called 
“heavy-tailed” distribution. To start with we will give 
some definitions and consider the most typical cases 
[4].  
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Definition. The random variable is considered to 
have heavy-tailed distribution if 

∞→⋅> − x,xc~]xZ[P a   (3.9) 
where 0<a<2 and is referred to as a shape parameter, c 
- a positive constant. Unlike light-tailed distribution, 
such as exponential or Gaussian, which has exponential 
decrease of the tail, heavy-tailed distribution has tails 
that decrease under the power law. With 2a0 << , 
heavy-tailed distribution has an infinite dispersion, and 
with , it also has an infinite average. 
Speaking of the network, the case of 

1a0 ≤<
2a1 <<  is of 

particular interest. 
In the class of heavy-tailed distributions, the Pareto 

distribution is most frequently used with the 
distribution function: 

xb,
x
b1]xZ[P

a

≤





−=≤  (3.10) 

The main property of the random variable, 
distributed according to heavy-tailed distribution, is 
that it shows high variability. I.e. sample capture from 
heavy-tailed distribution represents mostly relatively 
low values, and yet it also contains quite a number of 
very high values. It can be shown that heavy-tailed 
distribution is tightly bound to the notion of long 
memory and LRD. Let us consider the predictability of 
some random variable having heavy-tailed distribution 
[4].  

Assume that Z is a random variable having heavy-
tailed distribution and interpreted as the life time 
(duration) of the session (ТСР session, for example). 
Now suppose that the session is active for some time 
τ > 0. Then the conditional probability )(L τ  that the 
session remaining active for a time τ≤t≤

δ2c

1  will exist 
during the following δ > 1 steps into the future is 
estimated in the case of light-tailed distribution, in 
particular for exponential-tailed distribution 

, as  I.e. in the case 
of “exponentially light tails” the duration of activity 
session in the past does not impact the forecast. For 
heavy tails similar calculations result to 

x2c
1ec~}xZ{P −> τ e~)(L −

a)/1()(L −+= τδτ   (3.11) 
which means 

∞→→ ττ ,1)(L .  (3.12) 
Thus, the more the period of observational activity of 
the session is, the higher is a probability that the 
session will continue to exist in the future. I.e. the 
process has persistence and, therefore, with great 
enough τ, the prediction error may be as small as we 
please. 
 

D. Hurst exponent and forecasting 
 

During centuries annual floods of the Nile were a 
basis of the agriculture of many known civilizations of 
Africa. Good irrigation means a good harvest while 
low water resulted in crop failure and shortage of food. 

Having reviewed the annals for 800 years for floods of 
the Nile, British official Harold Edwin Hurst detected 
that there was a tendency when a year of good flooding 
was followed by another fertile year, and, on the 
contrary, a year of low water was followed by another 
foodless year. In other words, it seemed that the 
foodless and fertile years were not random. To prove 
this fact Hurst introduced the coefficient 0 < H < 1, 
which is now named after him as the Hurst coefficient. 
If the levels of annual floods were independent from 
each other, it would be logical to present the process of 
floods by the usual Brownian motion (BM) with 
independent increments, with the Hurst coefficient 
H = 0.5. However, as was found out by Hurst, for the 
Nile 7.0H ≈ . 

One of the ways to calculate the coefficient H is the 
analysis of the so-called R/S statistics (the rescaled 
adjusted range). Let us designate ξ an annual water 
level in the Nile, then the average level of water for τ 
years: 

∑
=

=
τ

ξ
τ

ξ
1i

i
1][M    (3.13) 

Let us get a new (cumulative) time series, representing 
the sum in time t of annual variation of water level of 
the Nile in reference to the average M[ξ]: 

∑
=

≤≤−=
t

1i
i t1]),[M(),t(X τξξτ  (3.14) 

In this case the range between the maximum and 
minimum values of X(t,τ) in time τ is designated by 
R(τ): 

τ
τττ

≤≤
−=

t1
)),,t(Xmin()),t(Xmax()(R

 (3.15) 

Then the R/S statistics will be determined by the non-
dimensional relation of range R(τ) to standard 
deviation ξ: 

∑
=

−

==
τ

ξξ
τ

τ
τ
τ

1i

2
i ])[M(1

)(R
)(S
)(RS/R  (3.16) 

Hurst showed that the dependence: 

∞→







ττ

τ
τ ,c~

)(S
)(RM H  (3.17) 

holds true for many natural phenomena, with с being a 
positive constant not dependent from τ. 

In particular, if the increments of temporal series 
(3.15) are independent, i.e. the time series represents 
BM with independent increments, then the Hurst 
coefficient in (3.17) is H = 0.5. However, for the Nile 
Hurst discovered that , which proved a certain 
dependence between consecutive samples ξ

7.0H ≈
i and ξi+1! 

It should be pointed out that in case of 0.5 < H < 1 
one speaks of persistent behavior of the process or that 
the process has long memory. In other words, if during 
some time in the past positive increments of the 
process were observed, that is increase occurred, then 
in future on the average increase will be the case as 
well. In other words, the probability that the process at 
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i+1 step deviates from the average in the same 
direction as at i step is as great as H parameter is close 
to 1. I.e. persistent stochastic processes show well-
defined varying tendencies over relatively low noise.  

In case of 0 < H < 0.5 one speaks of 
antipersistence of the process. In this case the high 
values of the process follow the low ones, and vice 
versa. In other words, the probability that at i+1 step 
the process deviates from the average in the opposite 
direction (in relation to the deviation at i step) is as 
great as H parameter is close to 0. 

With H = 0.5, deviations of the process from the 
average are really random and do not depend on the 
previous values, which corresponds to the case of BM.  

Let us remark that it is the property of persistence 
that justifies application for simulation and prediction 
of self-similar time series of AR models as follows 

   (3.18) n

p

1r
rnr0n XX εϕϕ +⋅+= ∑

=
−

with φi being constants and εn being uncorrelated 
random variables (white noise) with the zero average. 
The formula (3.18) shows how to predict the future of 
the process knowing its past. In particular, 
autoregressive models, such as ARMA (autoregressive 
moving average model), ARIMA (autoregressive 
integrated moving average model) and FARIMA 
(autoregressive fractional integrated moving average 
model) have become widely common. 
 

IV. NON-LINEAR DYNAMIC METHODS 
 

Another challenging research area of the network 
traffic is the use of non-linear dynamic methods for its 
simulation and prediction [5], [19], [3], [21]. It is 
known that chaotic systems have the following main 
properties: non-linearity, determinancy and sensitivity 
to the initial conditions. Besides, chaotic time series 
looks like a stochastic process. Also, the attractor of a 
non-linear chaotic system is frequently fractal. If it is 
possible to detect the feature of deterministic chaos in 
the traffic, we will obtain a new model of the traffic 
and a new algorithm of its prediction due to the chaos 
deterministic nature. In 2000 Andras Veres and Miklos 
Boda from Ericsson Research [3] performed an 
interesting work in which with the help of ns-2 
simulation modeling it is demonstrated that the traffic 
model of TCP protocol (TCP Tahoe version was used) 
can be both a simple periodic process and, under some 
conditions, have a complex behavior compatible with 
the concept of deterministic chaos. In particular, the 
researchers obtained a trajectory of the system in phase 
space (Fig. 6) that they referred to the class of strange 
attractors. An attractor is a cluster set of trajectories in 
the phase space of the system to which all the 
trajectories from a neighborhood of this set tend. 

The work demonstrated that the Hausdorff 
dimension of such an attractor exceeds 1, but not so 
much as 2, specifically is equal to 1,61. Besides, for 

simultaneous operation of 30 ТСР sessions they 
estimated the Lyapunov exponent λ ≈ 1.11 meaning 
that after perturbation is introduced, the distinction 
between the sessions accrues with the average rate of   
eλ ≈ 3.03 per second, which is the evidence of 
sensitivity to the initial conditions. 

  
Fig. 6. “Strange” attractor for ТСР model connection.   
 

The combination of these two facts (the non-integer 
dimension and the positivity of the Lyapunov 
exponent) gives the researchers reason to speak about 
strangeness of the attractor and, as a consequence, 
about the presence in the system the features of 
deterministic chaos. 

Let us remark, however, that from the chaos 
theoretical stand, the trajectory of a strange attractor 
must not be periodic. Therefore, as the attractor 
represented in fig. 6 is periodic (though its period is 
long enough - about 4 hours), let us refer to it as almost 
strange (i.e. “strange”). Still the work is a very 
important step forward, as it demonstrates that a system 
of ТСР sessions simultaneously operating on one 
connection may enter, on some conditions, to the mode 
of deterministic chaos and make the traffic having 
invisible order but which looks like an absolutely 
random process and was simulated earlier with the use 
of the theory of stochastic processes. Here it is 
important that it is a complex, looking like random, 
but, at the same time, deterministic process. Setting 
absolutely precise initial conditions, we can repeat this 
process as many times as possible, with the trajectories 
being absolutely identical. However, if arbitrarily small 
deviation from the initial conditions occurs, the 
trajectories diverge, with the distance between them in 
time increasing exponentially. But again, the system 
future is always completely determined by its past. 

The possibilities of dynamic systems in simulation 
of the network traffic are also studied in a series of 
research works by A. Erramilli and others [5]. They 
deal with the properties of chaotic maps as follows 

)1xd(,1y),x(fx

)dx0(,0y),x(fx

nnn21n

nnn11n

<<==

<<==

+

+   

with f1(.) and f2(.) being functions that satisfy the 
requirement of sensitivity to the initial conditions. 
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Besides, the construction of the model implies the 
source of the traffic to be actively or passively 
depending on whether xn  is more or less than limit d. 
The adequacy of the given model is confirmed by its 
characteristic properties of long-range dependence and 
heavy-tailed distribution. For one of the sets of 
parameters of chaotic map the correlation dimension of 
the attractor is estimated as 0.91.  

From the standpoint of traffic control, the presence 
the chaotic regimes in the traffic means a theoretical 
possibility of its prediction but if the precise 
dependence is established, certainly. It is necessary to 
note, however, that this approach to prediction has the 
following disadvantage: since it is physically 
impossible to ensure absolutely accurate initial 
conditions for the predictive function that correspond 
to this traffic, the discrepancy between the real and 
predicted traffic will quickly increase as the prediction 
interval (time covering the prediction of the process) 
increases. And, as follows from the theory of non-
linear dynamics, this increase will occur under the 
exponential law. 
 

V. RESULTS 
 

The analysis of the network traffic is actually 
reduced to the task of processing the time series. In 
turn, the theory of non-linear dynamics provides a 
potential to study, identification and prediction of the 
time series that have some specific properties. 

The application of the Takens theorem on 
embedding the attractor into spaces of various 
dimensions is one of the key concepts of the theory of 
non-linear dynamics. This method allows to reconstruct 
the parameters of the dynamic system from one-
dimensional time series by studying the system 
trajectory in m-dimensional phase space, with 
coordinates being the components of the following 
vector: , where τ is a 
time delay. This operation is referred to as embedding 
the attractor into m-dimensional space. A successful 
embedding results to the specific behavior of the 
system trajectory in the space of the given dimension. 
The absence of the specific behavior means either an 
incorrect selection of the space dimension or 
nonpossession of the system of the attractor. As the 
world around us has only three dimensions, we can 
imagine embedding the attractor into the space which 
dimension does not exceed three. However, it may be 
required to embed the attractor into spaces of greater 
dimension and select the most suitable dimension. For 
this purpose there are some special methods. One of 
them is the method [13] of False Nearest Neighbors 
(FNN). This method is designed for determination of 
the minimum acceptable dimension of the embedding 
space. Its principle is clear at an intuitive level. Let 

 and  be two near neighbors in the 

reconstruction of dimension m (that is 

}X,...X,X{Z )1m(iii
)m(

ττ +++=

)m(
jz)m(

iz

)m(
j

)m(
i zz −  is 

not enough), аnd  and  be in accord with 
them in reconstruction m+1. If we deal with really near 
neighbors, as a rule, they are close in both 
reconstructions. If the neighbors close in reconstruction 
m become distinct in reconstruction m+1 
(

)1m(
iz + )1m(

jz +

)1m(
j

)1m(
i zz ++ −  - too much), they are referred to as 

false nearest neighbors. If now we increase m and 
estimate the quantity of FNN, then when we reach the 
necessary dimension at which the correct 
reconstruction is achieved, that quantity sharply 
decreases. It is obvious that from a diagram of 
dependence of the quantity of false nearest neighbors 
on the dimension of the embedding space (on its 
minimum or decrease in zero) we can make a 
conclusion about the minimum possible dimension of 
the phase space. Fig. 7 shows typical FNN 
dependences for self-similar network traffic (BC-
Oct89Ext.TL [9]), as well as for white noise and 
deterministic chaos (in the form of the Lorenz system). 
Analyzing visually the curves of Fig. 7 it is possible to 
notice that the characteristics of the real traffic are 
between the situations of a complete disarray (white 
noise) and the complete order (of the Lorenz system), 
which is an illustrative example and points out to the 
possibilities to apply the methods of non-linear 
dynamics when studying the traffic. 

3 4 5 6

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 7 8

 
 
 
 White noise 
 
 
 BC-Oct89Ext.TL
 

Lorenz 
 
 m 
 
Fig. 7. FNN diagrams for the traffic, Lorenz chaotic system and 
white noise. 

 
The concept of the correlation integral that allows 

estimating the dimension D2 of attractor, embedded in 
the space of dimension m, is another basic concepts of 
non-linear dynamics. The estimation of the attractor 
dimension from a scalar time series is of interest in 
turn, as it allows estimating the minimum number of 
the essential dynamic variables necessary for the 
description of the process. The most popular algorithm 
for the calculation of correlation integral was offered 
by P. Grassberger and I. Prokaccia and is based on 
relation (5.1) 
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ji

ji

z,zpairsofquantitytotal

zzwithpairsofquantity
)m,(C

ε
ε

<−
=   (5.1) 

 
In this case zi , zj are vectors of the coordinates of 
points in the phase space of dimension m. This being 
the case the following relation holds true 

2D~),m(C εε  
permitting to estimate dimension D2 of the attractor by 
the slope of the most linear region of the diagram  

constlogD)m,(Clog 2 +−≅ εε  
As m increases, such estimation of D2 must tend to the 
true value of the correlation dimension of the attractor 
[20]. Fig. 8 shows a family of curves of correlation 
integral С(ε) for the Lorenz system, white noise and 
BC-Oct89Ext.TL traffic. The parameter of the family is 
the dimension m of embedding.  
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Fig. 8. Correlation integral diagrams for     
а) BC-Oct89Ext.TL traffic  
b) white noise 
c) Lorenz system  
 
Studying the dependences it is possible to make a 
conclusion that for the traffic as well as for the Lorenz 
system and in the contrary from the case of white noise 
there is characteristic curving. This curving is the cause 
of a plateau on the diagram of the local slopes for 
correlation integral (Fig. 9). 

So, as clear form Fig. 9a, for the traffic case the 
most adequate dimension of attractor is D2 ~ 2.5. But 
its value is varying from one traffic to another. 
Nevertheless, this result is holds true for most 
realization of traffic and has important significance, 

because allows to identify traffic as deterministic 
process with some level of noise. 
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As the determination of the statistical relation 
between the previous and following samples of time 
series is the primary problem for the prediction the 
traffic successfully, it is necessary to check up the 
statement about a statistical dependence between 
consecutive samples of the time series. The so-called 
BDS-test [10] based on the correlation integral 
properties has become rather famous. For this purpose 
the following statistics (5.2) is calculated 

)(
)n,1,(C)n,m,(C1mn)(w

n,m

m

n,m εσ
εεε −

+−=   (5.2) 

Under the conditions of a null hypothesis about the 
independent and identical distributed (i.i.d) samples of 
the time series, statistics wm,n(ε) has normal distribution 
N(0,1). By the deviation from this distribution, a 
statistical relation between the consecutive samples of 
time series is judged. Let us carry out the test for the 
traffic, Lorenz system and white noise time series by 
means of BDS program by D. Dechert. The results of 
calculations are given in Chart 1. 

Studying the results it is possible to conclude that 
the null hypothesis of i.i.d for the Lorenz system and 
the network traffic time series is rejected at the 5 % 
significance level as |wm,n(ε)|< 1.96. While in the case 
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of white noise the null hypothesis is not rejected for 
any value of  m and ε. 
 

ε m w 

0.394670 3 1.9851E+0001 

0.394670 4 2.6883E+0001 

0.394670 5 3.2429E+0001 

0.394670 6 3.6749E+0001 

0.394670 7 4.0058E+0001 

0.394670 8 4.2538E+0001 

0.343826 2 1.4466E+0001 

0.343826 3 2.4942E+0001 

0.343826 4 3.2417E+0001 

0.343826 5 3.7635E+0001 

0.343826 6 4.1159E+0001 

0.343826 7 4.3417E+0001 

0.343826 8 4.4737E+0001 

0.299532 2 1.6972E+0001 

0.299532 3 2.7988E+0001 

0.299532 4 3.4943E+0001 

0.299532 5 3.9130E+0001 

0.299532 6 4.1441E+0001 

0.299532 7 4.2501E+0001 

0.299532 8 4.2732E+0001 

0.260944 2 1.8564E+0001 

0.260944 3 2.9283E+0001 

0.260944 4 3.5168E+0001 

0.260944 5 3.8082E+0001 

0.260944 6 3.9204E+0001 

0.260944 7 3.9270E+0001 

0.260944 8 3.8723E+0001 

0.227327 2 1.9361E+0001 

0.227327 3 2.9221E+0001 

0.227327 4 3.3809E+0001 

0.227327 5 3.5498E+0001 

0.227327 6 3.5647E+0001 

0.227327 7 3.5013E+0001 
а)  b)  c) 
Chart 1. Calculation results of BDS- statistics 
а) For  the Lorenz system 
b) For BC-Oct89Ext.TL network traffic 
c) For  white noise 

 
When analyzing of the traffic of th

the author noticed the presence in the s
traffic time series of some harmonic co
levels that are not compatible with 
flicker-noise (3.8). A typical power sp
time series  for the traffic LBL-P
(averaged on blocks of 0.1 sec.) is given

Analyzing the given spectrum it is p
the presence of a strong harmonic com
frequency of ~5 Hz. As the aggregation 
it is also possible to mark the presence 

of  ~10 Hz. Similar observations can be made on 
studying LBL-TCP-3 [9] traffic. 

 
 ε m w 
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0.111111 2 3.8698E+0000 

0.111111 3 7.7632E+0000 

0.111111 4 1.1325E+0001 

0.111111 5 1.4573E+0001 

0.111111 6 1.7537E+0001 

0.111111 7 2.0255E+0001 

0.111111 8 2.2774E+0001 

0.096821 2 4.2689E+0000 

0.096821 3 8.4566E+0000 

0.096821 4 1.2206E+0001 

0.096821 5 1.5610E+0001 

0.096821 6 1.8697E+0001 

0.096821 7 2.1473E+0001 

0.096821 8 2.3998E+0001 
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0.084368 3 8.9713E+0000 
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0.084368 6 1.9594E+0001 
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0.084368 8 2.4941E+0001 

0.073517 2 4.8576E+0000 

0.073517 3 9.4901E+0000 

0.073517 4 1.3595E+0001 

0.073517 5 1.7198E+0001 

0.073517 6 2.0404E+0001 

0.073517 7 2.3181E+0001 
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Fig. 10. LBL-PKT-5.TCP time series on a logarithmic scale on a y-
axis. 

Let us mark that in [6] and [7], when studying the 
traffic, similar results are obtained and the presence of 
harmonics with frequencies of ~ 11.9 Hz and 1.25 Hz 
in the wan-traffic is revealed. 

The discovered phenomenon has an important 
significance as it reveals the presence of a regular 
deterministic component in the network traffic, which 
may be of interest in solving the problems of teletraffic 
forecasting. 
 

VI. CONCLUSIONS 
 

This work looks into the possibilities to provide the 
necessary level of QoS under the conditions of the self-
similar traffic, characteristic of telecommunication 
networks with packet transmission. In particular, an 
algorithm based on traffic prediction and capable of 
enhancing the effectiveness of traffic processing in 
network nodes from the point of view of QoS provision 
is at issue. The work covers some results from the 
theory of the self-similar teletraffic pointing out to the 
possibilities of traffic forecasting. At the same time the 
network traffic is considered from the standpoints of 
the theory non-linear dynamics: while the majority of 
existing methods of traffic simulation are based on the 
models of stochastic processes, this work indicates the 

 
 
 

ε m w 

.280897 3 8.6298E-0002

.280897 4 1.7640E-0001

.280897 5 2.4202E-0001

.280897 6 2.6935E-0001

.280897 7 2.6535E-0001

.280897 8 2.8305E-0001

.244361 2 -1.8969E-0003

.244361 3 8.6625E-0002

.244361 4 1.7790E-0001

.244361 5 2.3287E-0001

.244361 6 2.4508E-0001

.244361 7 2.2344E-0001

.244361 8 2.2093E-0001

.212577 2 -1.0176E-0002

.212577 3 8.4664E-0002

.212577 4 1.6756E-0001

.212577 5 2.0341E-0001

.212577 6 2.0031E-0001

.212577 7 1.6980E-0001

.212577 8 1.5283E-0001

.184928 2 -1.6581E-0002

.184928 3 7.5984E-0002

.184928 4 1.4147E-0001

.184928 5 1.6165E-0001

.184928 6 1.4856E-0001

.184928 7 1.1643E-0001

.184928 8 9.4440E-0002

.160874 2 -2.5229E-0002

.160874 3 5.6593E-0002

.160874 4 1.0341E-0001

.160874 5 1.0948E-0001

.160874 6 9.1606E-0002

.160874 7 6.4733E-0002

  

e real network, 
pectrums of the 
mponents with 

the concept of 
ectrum W(f) of 
KT-5.TCP [9] 
 in Fig.10. 
ossible to mark 
ponent with the 
level decreases, 
of the harmonic 

possibilities of traffic simulation by means of purely 
deterministic (chaotic) objects. In turn, the 
identification of the deterministic (possibly chaotic) 
component in traffic will result into more accurate 
forecasts. Also, the application of the FNN test and the 
calculation of the correlation integral demonstrate that 
the traffic of the real network (as well as chaotic 
models) has deterministic structure, possibly. And, it 
cannot be related to the class of purely stochastic 
processes. In other words, analyzing the obtained 
characteristics it is possible to classify the traffic as a 
strongly noisy process having some deterministic 
(chaotic perhaps) features. By means of calculation of 
BDS-statistics the work demonstrates that the 
hypothesis on a statistical independence of the 
consecutive samples of time series is rejected for all 
recommended values of ε and m at the 5% significance 
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level. This fact enables to draw a conclusion on basic 
possibility to predict the traffic. Besides, the work 
examines a power spectrum of a time series of the 
aggregated network traffic. The spectrum possesses a 
strong harmonic component at the frequency of ~5 Hz. 
In other words, a principle deterministic component in 
the traffic shows up. This fact may also has 
significance in terms of prediction.  
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