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Abstract. In the literature of Electromagnetism, the electotive force of a “circuit”

is often defined as work done on a unit chargendua complete tour of the latter
around the circuit. We explain why this statemesmirot be generally regarded as
true, although it is indeed true in certain simpdeses. Several examples are used to
illustrate these points.

1. Introduction

In a recent paper [1] the authors suggested a pgdad approach to thelectromo-
tive force(emf) of a “circuit”, a fundamental concept of Electragmetism. Rather
than defining the emf in amd hocmanner for each particular electrodynamic system,
this approach begins with the most general dedinibf the emf and then specializes
to certain cases of physical interest, thus recogethe familiar expressions for the
emf.

Among the various examples treated in [1¢ tlase of a simple battery-resistor
circuit was of particular interest since, in these, the emf was shown to be equal to
thework, per unit chargegdone by the source (battery) for a complete toourad the
circuit. Now, in the literature of Electrodynamiitee emf is ofterdefinedas work per
unit charge. As we show in this paper, this is generally true except for special
cases, such as the aforementioned one.

In Section 2, we give the general definitafrthe emf,£, and, separately, that of

the work per unit chargey, done by the agencies responsible for the geperatid
preservation of a current flow in the circuit. Ween state the necessary conditions in

order for the equalitf=w to hold. We stress that, by their very definitipisandw

are different concepts. Thus, the equatiéaw suggests the possible equality of the

valuesof two physical quantities, not the conceptuahideation of these quantities!
Section 3 reviews the case of a circuit cxtirgy of a battery connected to a resis-

tive wire, in which case the equalify¢w is indeed valid.

In Sec. 4, we study the problem of a wire mgvhrough a static magnetic field.
A particular situation where the equalifyw is valid is treated in Sec. 5.

Finally, Sec. 6 examines the case of a statiowire inside a time-varying mag-
netic field. It is shown that the equalify¢w is satisfied only in the special case where
the magnetic field varies linearly with time.
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2. Thegeneral definitions of emf and work per unit charge

Consider a region of space in which an electromagfe/m) field exists. In the most
general sense, amjosedpathC (or loop) within this region will be called &ircuit”
(whether or not the whole or parts@fconsist of material objects such as wires, resis-
tors, capacitors, batteries, etc.).

Wearbitrarily assign a positive direction of traversing the léypand we con-

sider an elemend| of C oriented in the positive direction. Imagine notest charge
q located at the position afl , and letF be the force on at timet :

g dl
>+
C

Figure 1

This force is exerted by the e/m field itself, asllvas, possibly, by additionahergy
sources(e.g., batteries or some external mechanical @ctlat may contribute to the
generation and preservation of a current flow adotire loopC. Theforce per unit

chargeat the position ofil at timet, is

—h|
Il

(1)

Q|Tu

Note that f is independent afi, since the electromagnetic force @is proportional
to the charge. In particular, reversing the sign wfill have no effect onf (although

it will change the direction oF ).

In general, neither the shape nor the siz€ f required to remain fixed. More-
over, the loop may be in motion relative to an mdéinertial observer. Thus, for a
loop of (possibly) variable shape, size or positiorspace, we will use the notation
C(t) to indicate the state of the curve at time

We now define thelectromotive forcéemf) of the circuitC at timet as the line

integral of f alongC, taken in thepositivesense o€ :

W) =¢ f(rt)-dl 2) (

cw)

(whereF is the position vector ofli relative to the origin of our coordinate system).
Note that the sign of the emf is dependent uporcharce of the positive direction of
circulation ofC: by changing this convention, the signéak reversed.

As mentioned above, the force (per unit cepadgfined in (1) can be attributed to
two factors: the interaction ofwith the e/m field itself and the action qrdue to any

additional energy sources. Eventually, this laittéeraction iselectromagnetién na-
ture even when it originates from some externallhaeical action. We write:
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where f,, is the force due to the e/m field arfgpp is theapplied forcedue to an ad-

ditional energy source. We note that the forced(®s not include amgsistive(dis-
sipative) forces that oppose a charge flow al@ngt only contains forces that may
contribute to the generation and preservation ofi guflow in the circuit.

Now, suppose we allowsingle chargey to make a full trip around the circuit
under the action of the force (3). In doing so, ¢harge describes a curie in space

(not necessarily a closed one!) relative to anregtenertial observer. Letll’ be an
element ofC’ representing an infinitesimal displacemengan space, in timet. We

define thework per unit chargdor this complete tour around the circuit by theet
gral:

w= jc, f.-dr (4)

For astationarycircuit of fixed shapeC" coincides with the closed curné&and (4)
reduces to

w= <J5c f-dl  (fixed Q) (5)

It should be noted carefully that the inté@2a is evaluateat a fixed time,twhile
in the integrals (4) and (5) time is allowed toifldn general, the value o depends
on the timety whenq starts its round trip o€. Thus, there is a certain ambiguity in
the definition of work per unit charge. On the athand, the ambiguity (so to speak)
with respect to the emf is related to the depenelenthe latter on time

The question now is: can the emf be edqualalueto the work per unit charge,

despite the fact that these quantities are deftiéerently? For the equality=w to
hold, both& andw must be defined unambiguously. Thé§snust beconstant inde-
pendent of timed&/dt=0) while w must not depend on the initial tinyof the round

trip of q. These requirements are necessary conditionsder ¢hat the equality=w

be meaningful.

In the following sections we illustrate thaedeas by means of several examples.
As will be seen, the satisfaction of the above-noseid conditions is an exception
rather than a rule!

3. Aresistivewire connected to a battery

Consider a circuit consisting of an ideal batterg.( one with no internal resistance)
connected to a metal wire of total resistaRcés shown in [1] (see also [2]), the emf
of the circuitin the direction of the current equal to the voltag¥ of the battery.
Moreover, the emf in this case represents the wpek, unit charge, done by the
source (battery). Let us review the proof of thets¢ements:
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A (conventionally positiyemoving chargey is subject to two forces around the circuit

C: an electrostatic forc&, = qE at every point o€ and a forceF,, insidethe bat-

tery, the latter force carrying/from the negative pola to the positive polé through
the sourceAccording to (3), the total force per unit charge

f=fot fopp=E+ fopp
The emf in the direction of the current (i.e., cuolockwise), at any time is

g=¢_f-di=§_E-di+§_ T, di=[f, d (6)

a

where we have used the facts th'act E.dl =0 for an electrostatic field and that the

action of the source anis limited to the region between the poles oflibtery.

Now, in a steady-state situatioh= constant) the chargg moves at constant
speed along the circuit. This means that the fotak onq in the direction of the path
C is zero. In the interior of the wire, the electatie force F, = qE is counterbal-

anced by the resistive force grdue to the collisions of the charge with the pesit
ions of the metal (as mentioned previously, thitetaforce doesot contribute to the
emf ). In the interior of the (ideal) battery, hoxge, where there is no resistance, the
electrostatic force must be counterbalanced byaygosing force exerted by the

source. Thus, in the section of the circuit betwe@mdb, f,,,=—f.=—E. By (6),
then, we have:

g=-[TEdi=\-V,=V ™

whereV, andV, are the electrostatic potentialsaaandb, respectively. We note that
the emf is constant in time, as expected in a gtetate situation.

Next, we want to find the work per unit chaurfgr a complete tour around the cir-
cuit. To this end, we allowa single charge go make a full trip aroun@ and we use
expression (5) (since the wire is stationary anfixaid shape). In applying this rela-
tion, time is assumed to flow @smoves alongC. Given that the situation is static
(time-independent), however, time is not reallyssue since it doesn’t matter at what
moment the charge will pass by any given poin€oThus, the integration in (5) will
yield the same result (7) as the integration in (@spite the fact that, in the latter
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case, time was assuméged ! We conclude that the equality=¢ is valid in this
case: the endoesrepresent work per unit charge.

4. Moving wireinside a static magnetic field

Consider a wireC moving in thexyJplane. The shape and/or size of the wire need not
remain fixed during its motion. A static magnetield B(F) is present in the region

of space where the wire is moving. For simplicit)z assume that this field is normal
to the plane of the wire and directietb the page:

y

ol

Figure 3

In Fig. 3, thez-axis is normal to the plane of the wire and dirédtavards the reader.

We call da an infinitesimal normal vector representing amudat of the plane sur-
face bounded by the wire (this vector is diredted the plane, consistently with the
chosen clockwise direction of traversing the I&p If G, is the unit vector on the-

axis, thenda=—(da Uy and B=—B(F){,, whereB(F) =| B(F)|.
Consider an elemedt of the wire, located at a point with position aci rela-

tive to the origin of our inertial frame of refen Call o (') the velocity of this ele-

ment relative to our frame. Letbe a ¢onventionally positiyecharge passing by the
considered point at time This charge executes a composite motion, havielaity
U, along the wireand acquiring an extra velocity(r') due to the motion of the wire

itself. The total velocity of) relative to us is),,, =0, +0 .

Figure 4
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The balance of forces acting @rs shown in the diagram of Fig. 4. Tiragnetic
force on ¢ is normal to the charge’s total velocity and equmlF., = q(5,,x B) .

Hence, the magnetic force per unit chargeﬂs: Dot X B. Its component along the

wire (i.e., in the direction ofil) is counterbalanced by thesistive forceﬂ , Which

opposes the motion a@f alongC (this force, as mentioned previously, does con-
tribute to the emf ). However, the component ofrtiegnetic forcenormalto the wire
will tend to make the wire move “backwards” (inieedtion opposing the desired mo-
tion of the wire) unless it is counterbalanced byne external mechanical action
(e.g., our hand, which pulls the wire forward). Ndihe charge) takes a share of this
action by means of some force transferred to ithieystructure of the wire. This force
(which will be called arapplied forcg must benormalto the wire (in order to coun-
terbalance the normal component of the magnetaejoiWe denote the applied force

per unit charge byfapp. Although this force originates from an externaamanical

action, it is delivered tg through an electromagnetic interaction with thestal lat-
tice of the wire (not to be confused with the riaggsforce, whose role is different!).
According to (3), the total force contribgino the emf of the circuit is

f=f,+fp By (2), the emf at timeis

E®) =G, fadi+q,, Fopdl

The second integral vanishes since the appliect fisrmormal to the wire element at
every point ofC. The integral of the magnetic force is equal to

$. (0 B)-dl = §_ (0% B)-di+ §_(©xB-dl

The first integral on the right vanishes, as carséen by inspecting Fig. 4. Thus, we
finally have:

£®) =, [6(NxBM)-di (8)

c(t)
As shown analytically in [1], the emf Gfis equal to

E) = =50y () %) (

where we have introduced theagnetic fluxhroughC,
O, (t) = js(t)B(r)-daz jsw B(7) da (10)

[By St) we denoteany open surface bounded KByat timet ; e.g., the plane surface
enclosed by the wire.]

Now, letC" be the path ofj in space relative to the external observer, ftulla
trip of q around the wire (if every part of the wire is muyi C” will be anopen
curve). According to (4), the work done per uniaude for this trip is
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w= [ fo-dl + [ o dl

The first integral vanishes (cf. Fig. 4), while the second one we notice that

— JEE—

fopp- I

—_— —_—

di + f,,; dl”

—_—

"= f o = f s dI’
(since the applied force is normal to the wire edatreverywhere; see Fig. 4). Thus
we finally have:

JRE— —_— —

w= [ fpprdl with AT = fdl = f

oo 5 dt (11)

app

whered|” = 5 dt is the infinitesimal displacement of the wire etrhin timedit.

5. An example: Motion inside a uniform magnetic field

Consider a metal baalf) of lengthh, sliding parallel to itself with constant speed
on two parallel rails that form part of a U-shapetk, as shown in Fig. 5:

y
e b “+)

o da B}
— v =const
®B 1 di
d a
X
O — | X
0z
Figure 5

A uniform magnetic fieldB, pointing into the page, fills the entire regigncircuit
C(t) of variable size is formed by the rectangulapl¢abcdg. The field and the sur-

face element are written, respectively, E&—Bﬁz (where B=|B|= const) and

aaz(da)q (note that the direction of traversing the loGps now counterclock-
wise).

The general diagram of Fig. 4, representiregglialance of forces, reduces to the
one shown in Fig. 6, below. Note that this lattexgdam concerns only th@oving
part @b) of the circuit, since it is in this part only ththe velocityo and the applied

force f,,, are nonzero.

The emf of the circuit at tintas, according to (8),

E®)=¢  (GxB)-di =j:qu|=qu:d|:uBh

c()
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O

Figure 6

Alternatively, the magnetic flux througbis

epm(t):js(t)|§(r)-a?ai=—j9(D Bda= - ng” da= — Bh

(wherex is the momentary position of the bar at titpeso that

d dx
EM)=——d_(t)=Bh—= Bhv
® at m(®) at

We note that the emf is constant (time-independent)

Next, we want to use (11) to evaluate thekwmar unit charge for a complete tour
of a charge aroun@. Since the applied force is nonzero only on tlatice (@b) of C,
the path of integrationC" (which is a straight line, given that the chargeves at
constant velocity in space) will correspond to ithation of the charge along the metal
bar only, i.e., froma to b. (Since the bar is being displaced in space vihgecharge
is traveling along it, the lin€” will notbe parallel to the bar!) According to (11),

—

W= IC’ i::elpp' W with fapp' a; = Fapp' W =f appdl"z f ap’ dt

(cf. Fig. 6). Now, the role of the applied forcaascounterbalance thecomponent of
the magnetic force in order that the bar may mawastant speed in thxedirection.

Thus, fy,, =f,cos0=v,B co® =Bv and f,,,vdt=Bovv dt= Bv dl (sincev. dt

represents an elementary displacendatiof the charge along the metal bar in tidte
We finally have:

w:j:Budlz Buj:ou: Bu h

We note that, in this specific example, the valtighe work per unit charge is equal
to that of the emf, both these quantities beingstammt and unambiguously defined.
This wouldnot have been the case, however, if the magneticfelegnonuniform
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6. Stationary wireinside a time-varying magnetic field

Our final example concernsstationarywire C inside atime-varyingmagnetic field
of the form B(F,t)=—B(F,t) 0, (whereB(F,t)=|B (,t)]), as shown in Fig. 7:

y

S
1—/_‘{_

=l

Figure 7

As is well known [1-6], the presence of a time-wagymagnetic field implies the
presence of an electric fiel as well, such that

VxE=_28 (12)
ot
As discussed in [1], the emf of the circuit at time given by
() :cj; E(F,t)-dl = LI t) (13)
c dt ™
where
D (t)= jsé(r,t)ﬁ: jSB(T, t)da (14)

is the magnetic flux throug@ at this time.
On the other hand, the work per unit chaageaffull trip aroundC is given by (5):

w= cﬁc f.di, wheref =f, =E+(5,xB), so that
w=ﬁ35dr+@qua-m
As is easy to see (cf. Fig. 7), the second integaaishes, thus we are left with
w=§35d| (15)

The similarity of the integrals in (13) arkb] is deceptive! The integral in (13) is
evaluatedat a fixed time,twhile in (15) time is allowed to flow as the cgamoves
along C. Is it, nevertheless, possible that truesof these integrals coincide? As
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mentioned at the end of Sec. 2, a necessary conddr this to be the case is that the
two integrations yield time-independent resultsotder that€ be time-independent

(but nonzero), the magnetic flux (14) — thus thegnatic field itself — must increase
linearly with time. On the other hand, the integration (I&) w will be time-
independent if so is the electric field. By (12)em, the magnetic field must be line-
arly dependent on time, which brings us back toptlesious condition.

As an example, assume that the magneticiSeddl the form

B=-B,tl, (B = cons)
A possible solution of (12) foE is, in cylindrical coordinates,

g- PPy
2

We assume that these solutions are valid in adohiégion of space (e.g., in the inte-
rior of a solenoid whose axis coincides with #exis) so thap is finite in the region
of interest. Now, consider a circular wigof radiusR, centered at the origin of the

xy-plane. Then, given thatl =—(dl)d,, ,
=T BR B >
5_SBCE-d|_——2 ¢_dI=-B7R

Alternatively, @ = stda: Bz R sothatf=-d®d, /dt=-BrR. We ex-

pect that, due to the time constancy of the elefild, the same result will be found
for the workw by using (15).

7. Concluding remarks

No single, universally accepted definition of tefeseems to exist in the literature of
Electromagnetism. The definition given in this @#i(as well as in [1]) comes close
to those of [2] and [3]. In particular, by using @xample similar to that of Sec. 5 in
this paper, Griffiths [2] makes a clear distinctibatween the concepts of emf and
work per unit charge. In [4] (as well as in numerather textbooks) the emf is identi-
fied with work per unit charge, in general, white[b] and [6] it is defined as a closed
line integral of the non-conservative part of thectic field, accompanying a time-

varying magnetic flux.

The balance of forces and the origin of warka conducting circuit moving
through a magnetic field are nicely discussed jiV[B].

Of course, the list of references cited absvby no means exhaustive. It only
serves to illustrate the diversity of ideas conegyrihe concept of the emf. The sub-
tleties inherent in this concept make it an int@ngssubject for continuing research,
for the advanced student of classical Electrodynami
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