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Abstract. We present an introductory overview of several challengirgplems in the statistical
characterisation of turbulence. We provide examples fraid turbulence in three and two dimen-
sions, from the turbulent advection of passive scalardutence in the one-dimensional Burgers
equation, and uid turbulence in the presence of polymeritads.
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1. Introduction

Turbulence is often described as the last great unsolvdderoof classical physics [1-3].
However, it is not easy to state what would constitute a gmubf the turbulence prob-
lem. This is principally because turbulence is noe problenbut a collection okeveral
important problems: These include the characterisati@hamtrol of turbulent ows,
both subsonic and supersonic, of interest to engineersasiabws in pipes or over cars
and aeroplanes [4,5]. Mathematical questions in this area@ncerned with develop-
ing proofs of the smoothness, or lack thereof, of solutiohthe Navier-Stokes and re-
lated equations [6—10]. Turbulence also provides a vamdétghallenges for uid dy-
namicists [5,11-13], astrophysicists [14—-17], geophgs¢18,19], climate scientists [20],
plasma physicists [15-17,21,22], and statistical phgs&dR23—32]. In this brief overview,
written primarily for physicists who are not experts in tuldnce, we concentrate on some
recent advances in the statistical characterisation af turbulence [33] in three dimen-
sions, the turbulence of passive scalars such as pollugaditstwo-dimensional turbu-
lence in thin Ims or soap Ims [35,36], turbulence in the Byers equation [37—39], and
uid turbulence with polymer additives [40—42]; in most dii$ paper we restrict our-
selves tohomogeneous, isotropic turbulendd3,43,44]; and we highlight some similar-
ities between the statistical properties of systems att&calripoint and those of turbu-
lent uids [31,45,46]. Several important problems that wertbt attempt to cover include
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Rayleigh-Bénard turbulence [47], super uid turbulen8el8], magnetohydrodyanmic tur-
bulence [15,17,21,22], the behaviour of inertial parsdteturbulent ows [49], the transi-
tion to turbulence in different experimental situation8,[l], and boundary-layer [52,53]
and wall-bounded [54] turbulence.

This paper is organised as follows: Section 2 gives an ogeref some of the experi-
ments of relevance to our discussion here. In Section 3 wednte the equations that we
consider. Section 4 is devoted to a summary of phenomerwabapproaches that have
been developed, since the pioneering studies of Richaf@&ymand Kolmogorov [56], in
1941 (K41), to understand the behaviour of velocity and ogeicture functions irin-
ertial ranges Section 5 introduces the ideas of multiscaling that hawnlgkeveloped to
understand deviations from the predictions of K41-typenuimeenology. Section 6 con-
tains illustrative direct numerical simulations; it costsi of ve subsections devoted to
(a) three-dimensional uid turbulence, (b) shell modety,t(vo-dimensional turbulence in
soap Ims, (d) turbulence in the one-dimensional Burgensagipn, and (e) uid turbulence
with polymer additives. Section 7 contains concluding rekea

2. Experimental Overview

Turbulent ows abound in nature. They include the ow of wata a garden pipe or in
rapids, the ow of air over moving cars or aeroplanes, jett tire formed when a uid is
forced through an ori ce, the turbulent advection of padints such as ash from a volcanic
eruption, terrestrial and Jovian storms, turbulent cotiwadn the sun, and turbulent shear
ows in the arms of spiral galaxies. A wide variety of expedntal studies have been
carried out to understand the properties of such turbulents; we concentrate on those
that are designed to elucidate the statistical properfiegrbulence, especially turbulence
that is, at small spatial scales and far away from bounddr@sogeneous and isotropic
Most of our discussion will be devoted to incompressible spvice., low-Mach-number
cases in which the uid velocity is much less than the velpaoit sound in the uid.

In laboratories such turbulence is generated in many éiffeways. A common method
uses a grid in a wind tunnel [57]; the ow downstream from tgitd is homogeneous and
isotropic, to a good approximation. Another technique bigevon Karman swirling ow,
i.e., ow generatedin a uid contained in a cylindrical tamkth two coaxial, counterrotat-
ing discs at its ends [58-60]; in the middle of the tank, faagivom the discs, the turbulent
ow is approximately homogeneous and isotropic. Electrgnetically forced thin Ims
and soap Ims [1,35,36] have yielded very useful resultstien-dimensional turbulence.
Turbulence data can also be obtained from atmospheric loyted/ers [61-64], oceanic
ows [65], and astrophysical measurements [14]; experitakronditions cannot be con-
trolled as carefully in such natural settings as they camlzelaboratory, but a far greater
range of length scales can be probed than is possible indedrgrexperiments.

Traditionally, experiments have measured the velag{ty; t) at a single poink at var-
ious timest by using hot-wire anemometers; these anemometers can ingtegibns in
(a) the number of components of the velocity that can be nmtedsand (b) the spatial and
temporal resolutions that can be obtained [66,67]. Suctsareaents yield a time series
for the velocity; if the mean ow velocityJ >> u (s , the root-mean-square uctuations
of the velocity, then Taylor's frozen- ow hypothesis [5,3&n be used to relate temporal
separationsgt to spatial separations , along the mean ow directionvia = U t. The
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Reynolds numbeRe = UL= , whereU andL are typical velocity and length scales in
the ow and is the kinematic viscosity, is a convenient dimensionlesdol parameter;
at low Re ows are laminar; as it increases increases there is a tiando turbulence
often via a variety of instabilities [50] that we will not cewhere; and at largRe fully
developed turbulence sets in. To compare different ows ibften useful to employ the
Taylor-microscale Reynolds numbRe = uy,s = , where the Taylor microscalecan
be obtained from the energy spectrum as described below §S¥c

Re nements in hot-wire anemometry [63,68] and ow visuali®n techniques such as
laser-doppler velocimetry (LDV) [66], particle-image weimetry (PIV) [66,67], particle-
tracking velocimetry (PTV) [66,67], tomographic PIV [69plographic PIV [70], and
digital holographic microscopy [71] have made it possiblebtain reliable measurements
of the Eulerian velocity (x;t) (see Sec. 3) in a turbulent ow. In the simplest forms of
anemometry a time series of the velocity is obtained at angiwent in space; in PIV two
components of the velocity eld can be obtained in a sheetgiven time; holographic
PIV can yield all components of the velocity eld in a volunf@omponents of the velocity
derivative tensoAj; @ui; can also be obtained [63] and tgence quantities such as the
energy dissipation rate per unit mass per unit volume i (@Quj + @Qu;)?, the
vorticity! = r  u, and components of the rate of strain tengpr (@u; + @u;)=2,
where the subscripisandj are Cartesian indices. A discussion of the subtleties amd li
itations of these measurement techniques lies beyond tipe saf our overview; we refer
the reader to Refs. [63,66,67] for details. Signi cant s has also been made over the
past decade in the measurement of Lagrangian trajectsees3ec. 3) of tracer particles
in turbulent ows [58,59]. Given such measurements, experitalists can obtain several
properties of turbulent ows. We give illustrative examslef the types of properties we
consider.

Flow-visualisation methods often display large-scaleereht structures in turbulent
ows. Examples of such structures plumes in Rayleigh-B&dnconvection [72], struc-
tures behind a splitter plate [73], and large vortical dttes in two-dimensional or strat-
ied ows [1,35,36]. In three-dimensional ows, as we willee in greater detail below,
energy that is pumped into the ow at the injection schleascades, as rst suggested
by Richardson [55], from large-scale eddies to small-scales till it is eventually dis-
sipated around and beyond the dissipation scgleBy contrast, two-dimensional turbu-
lence [35,36,74,75] displays a dual cascade: there is @msaexascade of energy from the
scale at which it is pumped into the system to large lengtlesand a direct cascade of
enstrophy = h%! 2i to small length scales. The inverse cascade of energy isiatst
with the formation of a few large vortices; in practical lisations the sizes of such vor-
tices are controlled nally by Ekman friction that is indwtee.g., by air drag in soap- Im
turbulence.

Measurements of the vorticity in highly turbulent ows show that regions of larde
are organised into slender tubes. The rst experimentalene for this was obtained by
seeding the ow with bubbles that moved preferentially tgioms of low pressure [76] that
are associated with largetegimes. For recent experiments on vortex tubes we refer the
reader to Ref. [77].

The time series of the uid velocity at a given poirtshows strong uctuations. It
is natural, therefore, to inquire into the statistical mujes of turbulent ows. From the
Eulerian velocityu(x;t) and its derivatives we can obtain one-point statisticshsag
probability distribution functions (PDFs) of the velocnd its derivatives. Velocity PDFs
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are found to be close to Gaussian distributions. HoweveEsR#! 2 and velocity deriva-
tives show signi cant non-Gaussian tails; for a recent gtuehich contains references to
earlier work, see Ref. [63]. The PDF ofis non-Gaussian too and the time series of
is highly intermittent [78]; furthermore, in the imRe ! 1 ,i.e., ! 0O, the energy
dissipation rate per unit volumeapproaches a positive constant value (see, e.g., Fig. 2 of
Ref. [79]), a result referred to agdissipative anomalgr thezeroth law of turbulence

Various statistical properties of the rate-of-strain tenwith components;; , have been
measured [63]. The eigenvalueg »;and 3, with ; > , > 3, of this tensor must
satisfy 1+ .+ 3=0,with ;> 0and , < 0O, inanincompressible ow. The sign of

2 cannot be determined by this condition but its PDF shows thatrbulent ows, » has

a small, positive mean value [80]; and the PDFsad( €), whereg is the normalised
eigenvector corresponding t@, show that there is a preferential alignment [63] odnd
e,. Joint PDFs can be measured too with good accuracy. An exashptcent interestis a
tear-drop feature observed in contour plots of the joint BRFespectively, the second and
third invariantsQ =  tr (A?)=2andR = tr (A3%)=3 of the velocity gradient tensd;;
(see Fig. 11 of Ref. [63]); we display such a plot in Sec. 6 tlegtls with direct numerical
simulations.

Two-point statistics are characterised conventionallgtoglying the equal-time, order-
p, longitudinal velocity structure function

Sp(r) = H(u(x + 1) u(x)) (r=r°i; (1)

where the angular brackets indicate a time average over dnequilibrium statisti-
cal steady state that we obtain in forced turbulence (degattirbulence is discussed
in Sec. 6.2). Experiments [33,81] show that, for separatiomn the inertial range
d <<r<<L

Sp(r) 7 (@)

with exponents, that deviate signi cantly from the simple scaling predicti56] ' =
p=3, especially fop > 3, where , < [#.. This prediction, made by Kolmogorov in
1941 (hence the abbreviation K41), is discussed in Sec.aWhéhe deviations from this
simple scaling prediction are referred to as multiscal®@ga, 5) and they are associated
with the intermittency of mentioned above. We mention, in passing, that the log-Boiss
model due to She and Leveque provides a good parametrigsttbe plot of , versusp
[82].

The second-order structure functiBp(r) can be related easily by Fourier transforma-
tion to the the energy spectrua(k) = 4 k 2hjt(k)j?i, where the tilde denotes the Fourier
transformk = jkj, k is the wave vector, we assume that the turbulence is homogene
and isotropic, and, for speci city, we give the formula fdret three-dimensional case.
Since X 4! = 2=3, the K41 prediction is

EX4((k) k 5% 3)

a result that is in good agreement with a wide range of exparim [see, e.g.,
Refs. [33,83]].

The structure functionSy(r) are the moments of the PDFs of the longitudinal velocity
incrementsuj  [(u(x +r) u(x)) (r=r)]. [Inthe argument 0§, we user instead of
r when we consider homogeneous, isotropic turbulence.]&'R&d-s have been measured
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directly [84] and they show non-Gaussian tails;radecreases, the deviations of these
PDFs from Gaussian distributions increases.

We now present a few examples of recent Lagrangian measutgifa8,59] that have
been designed to track tracer particles in, e.g., the vorm&a ow at large Reynolds
numbers. By employing state-of-the-art measurement tgabs, such as silicon strip de-
tectors [59], used in high-energy-physics experimentscoustic-doppler methods [58],
these experiments have been able to attain high spatidutiesoand high sampling rates
and have, therefore, been enable to obtain good data foleagtien statistics of La-
grangian particles and the analogues of velocity strudturetions for them.

These experiments [59] nd, fd800< Re < 970, consistency with the Heisenberg-
Yaglom scaling form of the acceleration variance, i.e.,

by G2 (172 . (4)

whereg; is the Cartesian componeinbf the acceleration. Furthermore, there are indica-
tions of strong intermittency effects in the acceleratibparticles and anisotropy effects
are present even at very larBe .

Orderp Lagrangian velocity structure functions are de ned alorigagrangian trajec-
tory as

Sip ()= Hvi(t+ ) v (@i (5)
where the superscrifit denotes Lagrangian and the subscrifite Cartesian component.
If the time lag lies in the temporal analogue of the inertial range, i.e., T,

where s the viscous dissipation time scale andis the time associated with the scale
L at which energy is injected into the system, then it is exgurbtiiat

Sil;-p( ) il;_p : (6)

The analogue of the dimensional K41 predictionj; = p=2; experiments and simu-
lations [60] indicate that there are corrections to thispdemlimensional prediction.

The best laboratory realisations of two-dimensional tlebce are (a) a thin layer of a
conducting uid excited by magnetic elds, varying both ipace and time and applied
perpendicular to the layer [85], and (b) soap Ims [86] in whiturbulence can be gener-
ated either by electromagnetic forcing or by the introduciof a comb, which plays the
role of a grid, in a rapidly owing soap Im. In the range of pameters used in typical
experimental studies [1,35,36,87] both these systems eatescribed quite well [88,89]
by the 2D Navier Stokes equation (see Sec. 3) with an additiBkman-friction term,
induced typically by air drag; however, in some cases we migstaccount for corrections
arising from uctuations of the Im thickness, compresdityi effects, and the Marangoni
effect. Measurement techniques are similar to those eregdltay study three-dimensional
turbulence [1,35,36]. Two-dimensional analogues of th&®&escribed above for 3D tur-
bulence have been measured [see, e.g., Refs. [87]]; weowitht on these brie y when
we discuss numerical simulations of 2D turbulence in Se8. &/locity and vorticity
structure functions can be measured as in 3D turbulencegvawinertial ranges associ-
ated with inverse and forward cascades must be distingdiighe former shows simple
scaling with an energy spectrui(k)  k 573 whereas the latter has an energy spectrum
E(k) k G ) with = 0 if there is no Ekman friction and> 0 otherwise. In the
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forward cascade velocity structure functions show simpddisg [87]; we are not aware
of experimental measurements of vorticity structure fiomg (we will discuss these in the
context of numerical simulations in Sec. 6.3).

We end this Section with a brief discussion of one examplaudiulence in a non-
Newtonian setting, namely, uid ow in the presence of polgmadditives. There are
two dimensionless control parameters in this cd&®eand the Weissenberg numbéafe,
which is a ratio of the polymer-relaxation time and a typishearing time in the ow
(some studies [41] use a similar dimensionless paramdtedd¢he Deborah numbébe).
Dramatically different behaviours arise depending on #ilees of these parameters.

In the absence of polymers the ow is laminar at I&®e; however, the addition of
small amounts of high-molecular-weight polymers can iredelastic turbulencg90], i.e.,

a mixing ow that is like turbulence and in which the drag irases with increasing e.
We will not discuss elastic turbulence in detail here; werdfie reader to Ref. [90] for an
overview of experiments and to Ref. [91] for representativmerical simulations.

If, instead, the ow is turbulent in the absence of polymérs,, we consider larg&e
ows, then the addition of polymers leads to the dramaticrdmeenon ofdrag reduction
that has been known since 1949 [92]; it has obvious and irapbimdustrial applications
[40,41,93-95]. Normally drag reduction is discussed in d¢batext of pipe or channel
ows: on the addition of polymers to turbulent ow in a pipehe pressure difference
required to maintain a given volumetric ow ratiecreasesi.e., the drag is reduced and
a percentage drag reduction can be obtained from the pagereduction in the pressure
difference. For a recent discussion of drag reduction ie pipchannel ows we refer the
reader to Ref. [41]. Here we concentrate on other phenonehate associated with the
addition of polymers to turbulent ows that are homogeneand isotropic. In particular,
experiments [93] show that the polymers lead to a suppnessiemall-scale structures
and important modi cations in the second-order structungction [96]. We will return to
an examination of such phenomena when we discuss directrimai@mulations in Sec.
6.5.

3. Models

Before we discuss advances in the statistical charactienizaf turbulence, we provide a
brief description to the models we consider. We start withlibsic equations of hydrody-
namics, in three and two dimensions, that are central taefud turbulence. We also give
introductory overviews of the Burgers equation in one disien, the advection-diffusion
equation for passive scalars, and the coupled NS and négtgnsible nonlinear elastic
Peterlin (FENE-P) equations for polymersin a uid. We enid tBection with a description
of shell models that are often used as highly simpli ed medet homogeneous, isotropic
turbulence.
At low Mach numbers, uid ows are governed by the Navier-83 (NS) Eq. (7)

augmented by the incompressibility condition

@u+(ur)u=r p+ rlu+f;
r u=0; (7)

where we use units in which the density 1, the Eulerian velocity at poimtand timet is
u(r;t), the external body force per unit volumefisand is the kinematic viscosity. The
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pressurg can be eliminated by using the incompressibility condif®33,43] and it can
then be obtained from the Poisson equatigip= @ (uiy; k In the unforced, inviscid
case, the momentum, the kinetic energy, and the helitity dr! u=2are conserved,;
here! r u is the vorticity. The Reynolds numb&e LV= , whereL andV are
characteristic length and velocity scales, is a convenmignénsionless control parameter:
The ow is laminar at lowRe and irregular, and eventually turbulent,Rs is increased.

In the vorticity formulation the NS equation 7 becomes

@ =r u '+ r?+r f; (8)

the pressure is eliminated naturally here. This formutatfoparticularly useful is two
dimensions since is a pseudo-scalar in this case. Speci cally, in two dimensj the NS
equation can be written in terms bfand the stream function:

@ J(;!')= r?+ gl +f;
r2 =1;
JGH) (@ @) (@)@ ): 9)
Here g is the coef cient of the air-drag-induced Ekman-frictiarin. The incompress-
ibility constraint

@Qux + Quy =0 (10)
ensures that the velocity is uniquely determined byia
u (@;@ ) (11)

In the inviscid, unforced case we have more conserved gdiemith two dimensions than
in three; the additional conserved quantities@b“i , for all powersn, the rst of which
is the mean enstrophys h%! 2.

In one dimension (1D) the incompressibility constraintdie#o trivial velocity elds.
It is fruitful, however, to consider the Burgers equatiof@][3which is the NS equation
without pressure and the incompressibility constrainis Has been studied in great detail
as it often provides interesting insights into uid turbote. In 1D the Burgers equation is

@+ Vv@v= r v+ (12)

wheref is the external force and the velocitycan have shocks since the system is
compressible. In the unforggd, inviscid case the Burgetmton has in nitely many
conserved quantities, namelyv"dx for all integersn. In the limit ! 0 we can
use the Cole-Hopf transformation,= @ , f @F, and 2 In , to obtain
@ = @ + F =),alinear partial differential equation (PDE) that can bed
explicitly in the absence of any boundary [38,39].

Passive scalars such as pollutants can be advected by Tiisse ows are governed
by the advection-diffusion equation

@ +ur = r? +f; (13)

where is the passive-scalar eld, the advecting velocity eldatis es the NS equation 7,
andf is an external force. The eld is passivebecause it does not act on or modify
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Note that Eq.( 13) is linear in. It is possible, therefore, to make considerable analyti-
cal progress in understanding the statistical properfipassive-scalar turbulence for the
simpli ed model of passive-scalar advection due to Kraiehifi34,97]; in this model each
component of is a zero-mean Gaussian random variable that is white in; iaréher-
more, each component afis taken to be a zero-mean Gaussian random variable that is
white in time and which has the covariance

hui (G )y (x + 1319 =2Dy (t t9; (14)
the Fourier transform dD;; has the form

1 =
i (a) / q2+p (@072 0 qq_?; (15)

g is the wave vectol. is the characteristic large length scaleis the dissipation scale,
and is a parameter. Inthelimitdf !'1 and ! Owe have, in real space,

Dj (r)= D° %du‘ (r) (16)

with
- LI
dij = Dyr (d 1+ ) i r—2 . (17)
D1 is a normalization constant anch parameter; fod < < 2 equal-time passive-scalar
structure functions show multiscaling [34].

We turn now to an example of a model for non-Newtonian owsislinodel combines
the NS equation for a uid with the nitely extensible nonkar elastic Peterlin (FENE-P)
model for polymers; it is usenhter alia to study the effects of polymer additives on uid
turbulence. This model is de ned by the following equations

@u+(ur)u= r2u+ —r:f@rp)d r p; (18)
P

f(rp)C |
P

@C+ uirC = CG(ru)+(ru)':C (19)

Here is the kinematic viscosity of the uid, the viscosity parameter for the solute
(FENE-P), p the polymer relaxation time, the solvent densityp the pressure(r u)”

the transpose dfr u), C h R R i the elements of the polymer-conformation tensor
C (angular brackets indicate an average over polymer comtjoms),| the identity ten-
sor with elements ,f(rp) (L? 3)=(L? r3) the FENE-P potential that ensures
nite extensibility, rp Tr(C) andL the length and the maximum possible extension,
respectively, of the polymers,aed =( + ) adimensionless measure of the polymer
concentration [98].

The hydrodynamical partial differential equations (PD#iscussed above are dif cult
to solve, even on computers via direct numerical simulafioNS), if we want to resolve
the large ranges of spatial and temporal scales that beaglmant in turbulent ows. It
is useful, therefore, to consider simpli ed models of tudnce that are numerically more
tractable than these PDEShell modelare important examples of such simpli ed models;
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they have proved to be useful testing grounds for the maliisg properties of structure
functions in turbulence. We will consider, as illustrateeamples, the Gledzer-Ohkitani-
Yamada (GOY) shell model [99] for uid turbulence in threendinsions and a shell model
for the advection-diffusion equation [100].

Shell models cannot be derived from the NS equation in antesatic way. They
are formulated in a discretised Fourier space with logaritlally spaced wave vectors
kn = ko™; ™ 1; associated with shells and dynamical variables that are the complex,
scalar velocities,. Note thatk, is chosen to be a scalar: spherical symmetry is implicit
in GOY-type shell models since their aim is to study homogeiseisotropic turbulence.
Giventhatk, andu, are scalars, shell models cannot describe vortical strestar enforce
the incompressibility constraint.

The temporal evolution of such a shell model is governed bgt afsordinary differen-
tial equations that have the following features in commoth\hie Fourier-space version
of the NS equation [12]: they have a viscous-dissipatiomtef the form k 2up, they
conserve the shell-model analogues of the energy and tleéyh el the absence of viscos-
ity and forcing, and they have nonlinear terms of the fékpu, u,o that couple velocities
in different shells. In the NS equation all Fourier modesh&f velocity affect each other
directly but in most shell models nonlinear terms limit dirnteractions to shell velocities
in nearest- and next-nearest-neighbour shells; thustdivezeping effects.e., the advec-
tion of the largest eddies by the the smallest eddies, ageptén the NS equation but not
in most shell models. This is why the latter are occasionaéiyed as a highly simpli ed,
guasi-Lagrangian representation (see below) of the NStiequa

The GOY-model evolution equations have the form

d .
[a"’ kﬁ]Un = i(@nUn+1 Uns2 b 1Un+1 + CoUn 1Un 2) + i (20)

where complex conjugation is denoted hythe coef cients are chosen to lag = kp,
bh = kn1,cn= (1 )kn 2 to conserve the shell-model analogues of the energy
and the helicity in the inviscid, unforced case; in any geadtcalculationl n N,
whereN is the total number of shells and we use the boundary conditig =08n< 1
or 8n > N ; as mentioned abovie, = kg and many groups use = 2, = 1=2,
ko = 1=16, andN = 22. The logarithmic discretisation here allows us to reacly égh
Reynolds number, in numerical simulations of this modetewith such a moderate value
of N. For studies of decaying turbulence we tgt= 0;8n; in the case of statistically
steady, forced turbulence [45] it is convenient to fise= (1 + {)5 10 3. For such a
shell model the analogue of a velocity structure functio8gék,) = hju(kn)jPi and the
energy spectrum i (kn) = ju(kn)j%=kn.

It is possible to construct other shell models, by using argpis similar to the ones we
have just discussed, for other PDEs such as the advectifusidn equation. Its shell-
model version is

a"' kr21] = ilkn( n+1Un 1 n 1Un+1)
k
n21( n 1Un 2+ n 2Un 1)
k
n21( n+2 Un+1 + n+1Un+2)] (21)
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For this model, the advecting velocity eld can either beabed from the numerical
solution of a uid shell model, like the GOY model above, or bbging a shell-model ver-
sion of the type of stochastic velocity eld introduced iretKraichnan model for passive-
scalar advection [46]. A shell-model analogue for the FENEodel of uid turbulence
with polymer additives may be found in Ref. [101].

3.1 Eulerian, Lagrangian, Quasi-Lagrangian frameworks

The Navier-Stokes Eq.( 7) is written in terms of the Euleriafocity u at positionx and
timet; i.e., in the Eulerian case we use a frame of reference thetdswith respect to the
uid; this frame can be used for any ow property or eld. Thealgrangian framework [5]
uses a complementary point of view in which we x a frame ofrefnce to a uidparticle;
this ctitious particle moves with the ow and its path is kmm as a Lagrangian trajectory.
Each Lagrangian particle is characterised by its positestarr g at timetg; its trajectory
at some later timéisR = R (t;rp;tp) and the associated Lagrangian velocity is

drR
V= o ro. (22)

We will also employ the quasi-Lagrangian [102,103] framegwihat uses the following
transformation for an Eulerian eld (r;t):

M) Ir+ R(tiro; 0);t]; (23)

here” is the quasi-Lagrangian eld arfd (t; ro; 0) is the position at timé of a Lagrangian
particle that was at poimg at timet = 0.

As we have mentioned above, sweeping effects are presentwdnase Eulerian veloc-
ities. However, since Lagrangian particles move with the, such effects are not present
in Lagrangian and quasi-Lagrangian frameworks. In expenisineutrally buoyant tracer
particles are used to obtain Lagrangian trajectories thathe used to obtain statistical
properties of Lagrangian particles.

4. Homogeneous Isotropic Turbulence: Phenomenology

In 1941 Kolmogorov [56] developed his classic phenomericki@pproach to turbulence
that is often referred to as K41. He used the idea of the Ritsmar cascade to provide an
intuitive, though not rigorous, understanding of the polegr behaviours we have men-
tioned in Sec. 2. We give a brief introduction to K41 phenooiegy and related ideas;
for a detailed discussion the reader should consult Ref. [33

First we must recognise that there are two important lencgles: (a) The largmtegral
length scalel that is comparable to the system size and at which energgtiofetakes
place; ow at this scale depends on the details of the systadrtlae way in which energy
is injected into it; (b) and the smalissipation length scaley below which energy dissi-
pation becomes signi cant. The inertial range of scalesyliich structure functions and
energy spectra assume the power-law behaviours mentidnoee §Sec. 2), lie in between
L and ; asReincreases so does the extent of the inertial range.
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In K41 Kolmogorov made the following assumptions: (a) Fudisveloped 3D turbu-
lence is homogeneous and isotropic at small length scatktfaamway from boundaries.
(b) In the statistical steady state, the energy dissipatita per unit volume remains -
nite and positive even wheRe ! 1 (the dissipative anomaly mentioned above). (c) A
Richardson-type cascade is set up in which energy is traesfby the breakdown of the
largest eddies, created by inherent instabilities of the, tb smaller ones, which decay
in turn into even smaller eddies, and so on till the sizes efatidies become comparable
to 4 where their energy can then be degraded by viscous digmipafisRe ! 1 all
inertial-range statistical properties are uniquely anstensally determined by the scale
and and are independent bf, and g.

Dimensional analysis then yields the scaling form of thesogistructure function

Sk (r) € PP, (24)

since has dimensions dflength)?(time) 3. [It is implicit here that the eddies, at any
given level of the Richardson cascade, are space llingpff, nis intermittent and scale
dependent as we discuss in Sec. 5 on multiscaling.] Tlﬁd’é = p=3; forp = 2

we getSK 4 (r)  r?= whose Fourier transform is related to the K41 energy spectru
E(k)K4t  k 573 (left panel of Fig. 1).

The prediction 4! = 1, unlike all others K41 results, can be derived exactly fer th
NS equationin the limiRe! 1 . In particular, it can be shown that [33,44]

. 4.
Ss() £ (25)
an important result, since it is both exact and nontrivial.
It is often useful to discuss K41 phenomenology by introdget , the velocity associ-
ated with the inertial-range length scaleclearly

VO (26)

The time scalé- V— the typical time required for the transfer of energy frorales of
order” to smaller ones. This yields the rate of energy transfer

— = (27)

Given the assumptions of K41, there is neither direct engjggtion nor molecular dissi-
pation in the inertial range. Therefore, the energy ubecomes independent oand is
equal to the mean energy dissipation raterhich can now be written as

V3= (28)

A similar prediction, for the two-point correlations of agséve-scalar advected by a
turbulent uid is due to Obukhov and Corsin; we shall not diss it here but refer the
reader to Ref. [104,105].

As we have mentioned above, the cascade of energy in 3D amtelis replaced in
2D turbulence by a dual cascade: an inverse cascade of efiemythe injection scale
to larger length scales and a forward cascade of enstroffh8G3¥4,75]. In the inverse
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Figure 1. (Color online) (a) A répresentative log-log plot of the emespectrum
E (k) versusk, from a numerical simulation of the GOY shell model with 22kh
The straight black line is a guide to the eye indicating K4dlisgk °=3. (b) A plot of
the equal-time scaling exponents versusp, with error bars, obtained from the GOY
shell model. The straight black line (color online) indesK41 scalingp=3.

cascade the energy accumulation at large length scalestiotied eventually by Ekman
friction. The analogue of K41 phenomenology for this caseaised upon physical argu-
ments due to Kraichnan, Leith and Batchelor [75]. Given thate is energy injection
at some intermediate length scale, kinetic energy gettréuised from such intermediate
scales to the largest length scale. The scaling result éotvitb cascades gives us a kinetic
energy spectrum that haga®=2 form in the inverse-cascade inertial range akd &form

(in the absence of Ekman friction) in the forward-cascaeéetial range.

5. From scaling to multiscaling

In equilibrium statistical mechanics, equal-time and tidependent correlation functions,
in the vicinity of a critical point, display scaling propes that are well understood. For
example, for a spin system thdimensions close to its critical point, the scaling forms of
the equal-time correlation functiag{r; t; h) and its Fourier transformg(k; t; h), for a pair

of spins separated by a distangere as follows:

G(rt¢ ); h=t0O
g(r;t;h) % (29)

G(k=t( );h=t0) )
k2 '

Here the reduced temperature= (T  T.)=T., whereT andT. are, respectively, the
temperature and the critical temperature, and the reduektlh = H=kg T, with H
the external eld andg the Boltzmann constant. The equal-time critical exponents
and are universal for a given universality class (the uncoriesal overbars are used
to distinguish these exponents from the kinematic visgpsitc.). The scaling functions
G and G can be made universal too if two scale factors are taken iotount [106].

a(k;t; h) (30)
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Precisely at the critical poir{t = 0; h = 0) these scaling forms lead to power-law decays
of correlation functions; and, as the critical point is aggrhed, the correlation length
diverges [e.g.,as t{ ) if h = 0]. Time-dependent correlation functions also display
scaling behaviour; e.g., the frequend¢y) dependent correlation function has the scaling
form to Eq. (30).

Z1- = 1t( ) - h=t()
gt ) S HEE ), (31)

This scaling behaviour is associated with the divergentbefelaxation time
% (32)

referred to as critical slowing down; hezas the dynamic scaling exponent.

In most critical phenomena in equilibrium statistical mactes we obtain the simple
scaling forms summarised in the previous paragraph. Thaiakeange behaviours of
structure functions in turbulence (Secs. 2 and 3) are girtdldahe power-law forms of
these critical-point correlation functions. This simitgiis especially strong at the level of
K41 scaling (Sec. 4); however, as we have mentioned eaghperimental and numerical
work suggests signi canultiscalingcorrections to K41 scaling with the equal-time mul-
tiscaling exponents, 6 X 41; in brief, multiscaling implies that, is not a linear function
p; indeed [33] it is a monotone increasing nonlinear functbp (see right panel of Fig.
1). The multiscaling of equal-time structure functionsres¢o be a common property of
various forms of turbulence, e.g., 3D turbulence and passbalar turbulence.

The multifractal model [33,107,108] provides a way of ratiising multiscaling cor-
rections to K41. First we must give up the K41 assumption d§ @me relevant length
scale” and the simple scaling form of Eq.( 28). Thus we write the égjuze structure
function as

S50 = Gl )A0) ¥ (39

where | p Pp=3is the anomalous part of the scaling exponent. We start \uith t
assumption that the turbulent ow possesses a range ofngcakponentd in the set

I = (hmin ;hmax ). For eachh in this range, there is a set, (in real space) of fractal
dimensiorD (h), such that,as==L ! 0,

vy (34)

ifr 2 y. The exponentthmin ; hmax ) are postulated to be independent of the mechanism
responsible for the turbulence. Hence
Z

Se() |d (h(=L)Pn+e P (35)

where theph term comes fronp factors of("=L) in Eq. (34) and the8 D(h) term
comes from an additional factor ¢f=L)3 P (M which is the probability of being within
a distance of " of the set }, of dimensionD (h) that is embedded in three dimensions.
The co-dimensio (h) and the exponents,,;;, andhmn.x are assumed to be universal
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[33]. The measurd (h) gives the weight of the different exponents. In the litsit. ! 0
the method of steepest descent yields

o= infulph+3  D(h): (36)

The K41 result follows from Eq. (36) if we allow for only onelue ofh, namelyh = 1=3
and seD (h) = 3. For more details we refer the reader to [33,107,108]; thereston to
time-dependent structure functions is given in Refs. [83,@9].

Exact results for multiscaling can be obtained for the Kiragn model of passive-scalar
turbulence. We outline the essential steps below; detailgime found in Ref. [34].

The second-order correlation function is de ned as

Co(l;t) = h(x;t) (x + I;t)i: (37)

Here the angular brackets denote averaging over the gtsitidtthe velocity and the force
which are assumed to be independent of one another [34].€fuiation of motion

@Cz(l;t) = h@ (x;t) (x + ;)i + h (x;)@ (x + I;1)i (38)

is easy to solve by rst by using the advection-diffusion ation and then using Gaussian
averages to obtain [34]

@Co(1) = Dul* 4@(d 1)I° ¥ Cy(1+2 11 ‘@ *@C:()]+ ( L'—);
1
(39)

where ( ) is the spatial correlation of the force [34] (notice that veswwork with just
the scalaﬂ “for the isotropic case). In the stationary state the timévetve vanishes on
the left hand side. We impose the boundary conditions tisdt,!al , C,(1) = 0, and
Cz(l) remains nite wherl ! 0, whence

1 Zl I’ld Zr

_ T yod 14,
)= Ggmy o, (LY (40)

Inthe limitly <<1<<L 1, the second-order structure function has the followindjisga
form,

2
So(l)  2[C2(0)  Ca(l 0) 12 ; 41
() 2C0 G0 G5 pp; © (41)
i.e., equal-time exponents = 2 ; this result follows from dimensional arguments as

well. For orderp correlation functions the equivalent of Eq. (38) can betemitsymboli-
cally as [34]

@Cp= MpCp+ DpCp+F Cp 2 (42)
where the operatdvl ; is determined by the advection terB, is the dissipative operator,

andF is the spatial correlator of the force. In the limit of vanigh diffusivity, and in
stationary state, the above equation reduces to
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M,C,= F C, 2 (43)
p~p p

The associated homogeneous and inhomogeneous equatiobs salved separately. By
assuming scaling behaviour, we can extract the scalingresqgdrom simple dimensional
analysis (superscriglim) to obtain
i p .
o= 5@ ) (44)

The solutionZp( rq; ro:: rp) of the homogeneous part of Eq. (43) are called the
zero-mode of the operatt ,. The zero-modes have the scaling property

Zp( ry; raiiorp) P Zp(rayraiirg): (45)
Their scaling exponents;®® cannot be determined from dimensional arguments. The
exponents ;¢° are also called anomalous exponents. And for a particuldergr the
actual scaling exponent is

b= min( Fz)ero : dim ) (46)

This is how multiscaling arises in Kraichnan model of passiealar advection. The prin-
cipal dif culty lies in solving the problem with a particuldoundary condition. In recent
times the following results have been obtained: Although ghaling exponents for the
zero-modes has not been obtained exactly for gngxcept forp = 2 (in which case
the anomalous exponent is actually subdominant), pertivebanethods have yielded the
anomalous exponents. Also, it has been shown that the cualitig disappears for> 2

or < Oand that, although the scaling exponents are universamitudes depend on
the force correlator and hence the structure functions $eéras are not universal. These
results have been well supported by numerical simulations.

Several studies of the multiscaling of equal-time struetiunctions have been carried
out as outlined above. By contrast there are fewer studigheomultiscaling of time-
dependent structure functions. We give an illustrativengxa for the Kraichnan model
of passive-scalar advection. For simplicity, we look at Ehderian second-order time-
dependent structure function which is de ned, in Fourieasy as [46,110]

F (kito;t) = h( k;to) (k;t)i: (47)
In order to arrive at a scaling form fér(k; to; t), we look at its equation of motion:

@ (k;to;t) _ @tk;t)

 Ta. h( k;to) ar (48)
A spatial Fourier transform of the advection-diffusion atjon (13) yields
z
k :
QWi hu@k aFa kiK1, 9)

so (48) maybe expanded as

e YA
W:ikj h( kito)uy (@) (k  g;t)id?gq Kk kih( k;to) (k;t)i:

(50)
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The above equation is solved with the help of Gaussian airegadhe rst term reduces
to

Zl
Kty (@) a:t)i = hu; () ui (t9)ih Kito) oy (K g; t9idt’
(51)
Equations (14) and (49) yield
. . Z
PR = ' by P (kitort): (52)
0

R
Since2 01 Djj dig= DOL) L ,the equation of motion of the second-order structure

function for the Eulerian eld becomes
@ (ntot) _ | @F (ntot),
@t @t '

(53)
whence [46]
Fkito;t) = (kito)e Kt & (54)

Thus it is clear that within the Eulerian framework we getragie dynamic scaling expo-
nentz = 2.
A similar analysis for the quasi-Lagrangian time-dependencture function [46] gives

@ (r;to;t) @ (ntoit) , @(tol)
ot @r@f ' erer

=(D°; Dj) (55)

A Fourier transform of Eq. (55) yield5(k;to;t) / exp[ t= ],where = k 2, which

implies a simple dynamic scaling exponent 2 in the quasi-Lagrangian framework.
In Sec. 6.2 we discuss dynamic scaling and multiscaling &l shodels.

6. Numerical Simulations

Numerical studies of the models described in Sec. 3 haveibated greatly to our un-

derstanding of turbulence. In this Section we give illustnumerical studies of the 3D
Navier-Stokes equation (Sec. 6.1), GOY and advectionssiifin shell models (Sec. 6.2),
the 2D Navier-Stokes equation (Sec. 6.3), the 1D Burgerstemu (Sec. 6.4) and the
FENE-P model for polymer additives in a uid (Sec. 6.5).

6.1 3D Navier-Stokes Turbulence

We concentrate on the statistical properties of homoges)@sotropic turbulence, so we
restrict ourselves periodic boundary conditions. Evernliese simple boundary condi-
tions, simulating these ows is a challenging task as a wadee of length scales has to be
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resolved. Therefore, state-of-the-art numerical sinitet use pseudo-spectral methods
that solve the Navier-Stokes equations via Fast Fouriastoams [111,112] typically on
supercomputers. For a discussion on the implementatioheopseudo-spectral method
we refer the reader to Refs. [111,112]. We outline this mgthelow: (a) Time marching
is done by using either a second-order, slaved Adams-Bakhdoa Runge-Kutta scheme
[113]. (b) In Fourier space the contribution of the viscoemt is -k 2u. (c) To avoid
the computational costs of evaluating the convolution beeaf the non-linear term, it is
rst calculated in real space and then Fourier transfornhedice the name pseudo-spectral
method. (d) In Fourier space the discretized Navier-Sttikes evolution us

1 exp( k?t)
k2

wheren is the iteration numbeN indicates the non-linearterm, aRgl = ( j kik; =k?)
is the transverse projector which guarantees incompiiissil{e) To suppress aliasing
errors we use 28=3 dealiasing scheme [112].

We give illustrative results from a direct numerical sintida DNS with 1024 that we
have carried out. This study uses the stochastic forcind.@é#Jand has attaineﬁi a Taylor
microscale Reynolds humb&e 100, whereRe = Ums o Ums 5 2E=3

is the root-mean-square velocity and the Taylor microscate E(k)= Kk2E(K).
For state-of-the-art simulations with up4096 collocation points we refer the reader to
Ref. [79]. As we had mentioned in Sec. 2, regions of high etytiare organised into
slender tubes. These can be visualised by looking at issesfofj! j as shown in the
representative plots of Figs 2 and 3. The right panel of Figsh@ws the PDF of! j;
this has a distinctly non-Gaussian tail. The structure gh#i j vorticity tubes shows
up especially clearly in the plots of Fig. 3, the second anidithanels of which show
successively magni ed images of the central part of the pahel (for 24096 version see
Ref. [79]).

un+l - exp( Kk 2 t)Un + PIJ [(3:2)N n (1:2)N n l]

0 20 40 Izso| 80 100 120
W]
Figure 2. (Color online) (Left) Isosurface plot gf j with j! j equal to its mean value.

(Right) A semilog plot of the PDF gt j.

One method to look at these structures is to study the joir BLthe invariant®) =
tr (A%2)=2andR = tr (A%)=3 of the velocity gradient tensor. The zero-discriminant or
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Figure 3. (Color online) (Left) Isosurface plot gf j with j! j equal to one standard
deviation more than its mean value. (Center) A magni ed ieer®f the central part of
the panel on the left. (Right) A magni ed version of the cahpart of the panel in the
middle.

P(v /s)

-08 -06 -04 -0.2 0 02 04 06 08 -2 0 2 4
R v s

Figure 4. (Color online) (Left) Joint PDFP(Q ;R ) of R = R=hsj s i*? and
Q = Q=hsj sj i calculated from our DNS. The black curve represents the-disro
criminant (or Vieillefosse) lin27R?=4 + Q® = 0. The contour levels are logarith-
mically spaced. (Right) PDF of the-component of the velocity (here denotes the
standard deviation); the parabolic curve is a Gaussiarighimwn for comparison.
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Figure 5. (Color online) (Left) The compensated energy spectkifiE (k) versus
k , where is the dissipation scale from our DNS (see text). (Right) BDFvelocity
increments that show marked deviation from Gaussian betainnermost curve),
especially at small length scales; the outermost PDF ish@welocity increment with

the shorter length scale.

5 10

Vieillefosse lineD  27R%=4 + Q3 = 0 divides the QR plane in different regions. The
region withD > 0 is vorticity dominant (one of the eigenvaluesAfis greater than zero
whereas the other two eigenvalues are imaginary); the mdgie 0 is strain dominated
(all the eigenvalues oA are real). The region® > 0andD < 0 can be further divided
into two more quadrants depending upon the sign of the e&jees. In the left panel of
Fig. 4 we show a representative contour plot of the joint FR ;R ) obtained from
our DNS. The shape of the contour is like a tear-drop, as ieexpents [63], with a tail
along the lineD = 0 in the region wher® > 0andQ < 0. The plotindicates that, in a
numerical simulation, most of the structures are vorticdikbere also exist regions of large
strain. For a more detailed discussion of the above claa8oa of different structures we
refer the reader to [63,115].

The left panel of Fig. 5 shows a plot of the compensated enspggtrumk®=3E (k)
versusk ( is the dissipation scale in our DNS). The at portion at Iéw indicates
agreement with the K41 for&X41(k)  k 5%. There is a slight bump after that; this
is referred to as a bottleneck (see Ref. [116] and Sec 6.d)splkctrum then falls in the
dissipation range. The right panel of Fig. 5 shows PDFs afaigt increments at different
scaleg. The innermost curve is a Gaussian for comparison; the rews§&an deviations
increase as decreases.

We do not provide data for the multiscaling of velocity sture functions in the 3D
Navier-Stokes equation. We refer the reader to Ref. [60pfoecent discussion of such
multiscaling. Often the inertial range is quite limited ch studies. This range can be
extended somewhat by using the extended-self-similad&i8S) procedure [117] in which
the slope of a log-log plots of the structure functiniversusS, yields the exponent ratio

p= q; this procedure is especially usefulgf= 3 since 3 = 1 for the 3D Navier-Stokes
case. We illustrate the use of this ESS procedure in Sed.d6.3D turbulence.

The methods of statistical eld theory have been used withhessuccess to study the
statistical properties of a randomly forced Navier-Stokgsiation [25,26,30,31]. The
stochastic force here acts at all length scales; it is Gansaid has a Fourier-space co-
variance proportional t&® Y. Fory 0, a simple perturbation theory leads to infrared
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divergences; these can be controlled by a dynamical refizatian group for suf ciently
smally; fory = 4 this yields a K41-typ& 572 spectrum at the one-loop level. This value
of y is too large to trust a low, one-loop result; also, foy 3, the sweeping effect
leads to another singularity [118]. Nevertheless, thisloamly forced model has played an
important role historically. Thus it has been studied nuoadly via the pseudo-spectral
method [119,120]. These studies have shown that, even lthihkegstochastic forcing de-
stroys the vorticity tubes that we have described abovégitly multiscaling of velocity
structure that is consistent, fgr= 4, with the analogous multiscaling in the conventional
3D Navier-Stokes equation, barring logarithmic corraasioWe will discuss the analogue
of this problem for the stochastically forced Burgers etumin Sec. 6.4.

6.2 Shell Models

Even though shell models are far simpler than their pareriigbaifferential equations
(PDEs), they cannot be solved analytically. The multisgpbf equal-time structure func-
tions in such models has been investigated numerically sgrakgroups; an overview of
earlier work and details about numerical methods for tHé stiell-model equations can
be found in Refs. [45,46,121]. An illustrative plot of eqimhe multiscaling exponents
for the GOY shell model is given in the right panel of Fig. 1.

We devote the rest of this Subsection to a discussion of tmamijc multiscaling of
time-dependent shell-model structure functions that lesntelucidated recently by our
group [45,46,109,110]. So far, detailed numerical studfessich dynamic multiscaling has
been possible only in shell models. We concentrate on tigpeddent velocity structure
functions in the GOY model and their passive-scalar anasg the advection-diffusion
shell model.

In a typical decaying-turbulence experiment or simulatienergy is injected into the
system at large length scales (smigll it then cascades to small length scales (ldcpe
eventually viscous losses set in when the energy reachedigbipation scale. We will
refer to this as cascade completion. Energy spectra anctsteufunctions show power-
law forms like their counterparts in statistically steadybulence. It turns out [46] that
the multiscaling exponents for both equal-time and timpesi@ent structure functions are
universal in so far as they are independent of whether theynaasured in decaying tur-
bulence or the forced case in which we get statisticallydstéarbulence.

Furthermore, the distinction between Eulerian and Lagearfgameworks assumes spe-
cial importance in the study of dynamic multiscaling of thtiependent structure functions.
Eulerian-velocity structure functions are dominated by $lveeping effect that lies at the
heart of Taylor's frozen- ow hypothesis; this relates sphéind temporal separations lin-
early (see Sec. 2) whence we obtain trivial dynamic scaliith wynamic exponents
sz = 1 for all p, where the superscrifig stands for Eulerian. By contrast, we expect
nontrivial dynamic multiscaling in Lagrangian or quasigtangian measurements. Such
measurements are daunting in both experiments and direvemeal simulations; how-
ever, they are possible in shell models. As we have mentiom&ekc. 3, shell models
have a quasi-Lagrangian character since they do not haaet diveeping effects. Thus we
expect nontrivial dynamic multiscaling of time-dependstnticture functions in them.

Indeed, we nd that [45,46,103] that, given a time-dependémicture function, we can
extract an in nity of time scales from it. Dynamic scaling gétze [cf., EqQ. (4)] can then
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be used to extract dynamic multiscaling exponents. A gdisat@n of the multifractal
model then suggests linear relations, referred to as bralggons, between these dynamic
multiscaling exponents and their equal-time counterpdrtese can be related to equal-
time exponents via bridge relations. We show how to checkeligidge relations in shell
models. However, before we present details, we must de me-dlependent structure
functions precisely.

The orderp, time-dependent, structure functions, for longitudinaloeity increments,
u(x;r;t)  [u(x+r;t) u(x;t)] and passive-scalar increments(x;t;r) = (X +
r;t) (x;t) are de ned as

F p (1 ft;iiiitpg) [u(x;tar) i u(X;tp;r)] (56)
and
Fo(rityintp) =< [ (xtasr)i (Xitpir)] > (57)
i.e., uctuations are probed over a length scalevhich lies in the inertial range. For
simplicity, we considet; = t andt, = ::: = t; = 0 in both Eq. (56) and Eq. (57).

GivenFY(r;t) andF (r;t), we can de ne the ordep; degreeM , integral-time scales
and derivative-time scales as follows [46]:

1 41 (1=M)
TN (nt) ST0) Fo(nt)t™M Dat : (58)
p
. 1 Z, 1=M)
Ty (1) 0] Fo(nt)t™ Yt : (59)
- 1 @Fprny )
Tom (1) Sn  @er ; (60)
. ( 1=M)
I R T (LD I (61)

SN @

Integral-time dynamic multiscaling exponerzt;l"M for uid turbulence can be de ned

viaT iy (nt) % and the derivative-time onaSy by Tou' (rit) 75 They
satisfy the following bridge relations [46]:

ZL;;LI:/I =1+[ p ™ p]=M; (62)

Zow =1+[ o pem]EM: (63)

For passive-scalars advected by a turbulent veIOC|ty tld correspondlng dynamic mul-
tiscaling exponents are de ned EéM (nt)/ r Zo andT w (nt)y/r Zo ; they satisfy
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the following bridge relations involving the scaling exgats \, of equal-time, ordeM
structure functions of the advecting velocity eld:

I; —
ZP;M =1

=1 M. (64)
These bridge relations, unlike Eq. (62) and Eq. (63), arepeddent op. [Recall that,
for the Kraichnan model, we have already shown in Sec. 5 tleatj@ simple dynamic
scaling.]

GOY-model equal-time structure functions and their asgtediinertial-range exponents
are de ned as follows:

D _E
Spkn)  [Un(ua (DP Kk, P (65)
The time-dependent structure function are
D _E
Fo'(knito;t)  [un(to)un(to+ )P (66)

We evaluate these numerically for the GOY shell model [nucaédetails may be found
in Refs. [45,46]], extract integral and derivative time Iesafrom them and thence the
exponenti,';;“l andz,'f;gJ , respectively, from slopes of log-log plots '63‘{ (n) versuskp

u

(right panel of Fig. 6) and oTF',D;2 (n) versusk, (right panel of Fig. 7).

25355 0 05 1 15 2z 25 3
, log k

Figure 6. (Color online) (a) A representative plot of the normalisedirth order
time-dependent structure function versus the dimensisriiene obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from tdpdttom). (b) A log-log
plot of TH (n) versusk (for convenience, we have dropped the subscriptthe label

of the x-axis in the gure); a linear t gives the dynamic mtikcaling exponenzl{;“1 .

There is excellent agreement (within error bars) of the isedling exponentzg;“l and

23;2” , obtained from our simulations, with the values computedifthe appropriate bridge
relations using the equal-time exponents,
For the passive-scalar case, the equal-time gpdsructure functions is
D _E
Sp(ka) [ () n(OP?  kn® (67)
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Figure 7. (Color online) (a) A 'representative plot of the normalisextts order
time-dependent structure function versus the dimensisriiene obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from wpattom). (b) A
log-log plot ofTGE?;Z“ (n) versusk (for convenience, we have dropped the subscrijt
tfg)e label of the x-axis in the gure); a linear t gives the dgmic multiscaling exponent
Zgy -

and its time-dependent version is

Fp (knito;t) =< [ n(to) o(to+ t)]P2 > (68)
We consider decaying turbulence here wigha time origin. It is useful now to work
with the normalised time-dependent structure funct@g(n; to; t) = % For the

case of passive-scalars advected by a velocity eld whictuibulent (a solution of the
GOY model), we calculate the integral (fot = 1) and derivative time scales (fof = 2)
corresponding to Eq.(58) and Eq.(60), respectively. Topesbf a log-log plot 011'F',§l (n)

I;
vsk, yields the integral time scale exponezj,t&, sinceTr',§1 (n)/ kn i Likewise, from

plots of the derivative time scales we extract the exponggt. For a detailed discussion
on dynamic multiscaling in this model we refer the reader éfsR[46,109].

6.3 2D Navier-Stokes Turbulence

We now consider illustrative numerical calculations fag #D NS equations (9)-(11). We
begin with periodic boundary conditions for which we can aggseudo-spectral method
similar to the one given in the previous Subsection for theNdPbcase. We study decay-
ing turbulence rst with the source functidn(the2 component of the curl of some force
r F)setto0. We usd024 collocation points and the standa2d3 dealiasing pro-
cedure; for time marching we use a second-order Runge-Kaktame [113]. Our initial
conditionj! (k)j> = k 3exp( k?) leads to a forward cascade. We seed the ow with
Lagrangian tracers and use a cubic spline interpolatiomoaeto calculate their trajecto-
ries [122]. Representative plots from our from our DNS arevahin Fig. 8. The rst
part (Fig. 8a) shows a compensated energy spedtiiatk) for the case with no Ekman
friction. Figure 8b, from a DNS with Ekman frictiong = 0:1, Kolmogorov forcing [89],
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and periodic boundary conditions, shows a trajectory ofgrdmagian tracer superimposed
on a pseudocolour plot of the vorticity eld at timte= 100; the tracer starts at the point
marked with a circlet(= 0) and ends at the star € 100). For a state-of-the-art simulation
that resolves both forward and inverse cascades in a forbidd 2D turbulence we refer
the reader to Ref. [123]; such DNS studies have also invastijthe scaling properties
of structure functions and have provided some evidencedofacmal invariance in the
inverse cascade inertial range [124].
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Figure 8. (Color online) (a) A Ibg-log plot of the compensated energgcirum
k3E (k) versusk from our DNS, of resolutior.024, of two dimensional decaying
turbulence with periodic boundary conditions. The at @gindicates a scaling form
E(k) k 3. (b) The trajectory of a single Lagrangian particle ovengetof order 100
in a two-dimensional ow with drag and forcing. The startipgint of the trajectory is
in the middle of the box and is indicated by a red circle; the point is indicated by a
blue star. The trajectory is superimposed on a pseudoctibofthe vorticity eld cor-
responding to the time at the end of the Lagrangian trajgcidre gure corresponds to
a forced DNS of resolutioh024 with periodic boundary conditions, statistical steady
state, and with a coef cient of Ekman frictione = 0:1.

We end with an illustrative example of a recent DNS study [B&{t sheds light on
the effect of the Ekman friction on the statistics of the fard/cascade in wall-bounded
ows that are directly relevant to laboratory soap- Im expaents [125-128]. The de-
tails of this DNS are given in Ref. [89]. In brief, is driven to a statistical steady state
by a deterministic Kolmogorov forcing, Kinj Focoskinj x), with Fo the amplitude
andki, the wavenumber on which the force acts; no-slip and no-paten boundary
conditions are imposed on the walls. The important non-dsmmal control parame-
ters are the Grashof numb@ér= 2 jjF, jj2=(ki?1j 2) and the non-dimensional Ekman
friction R E:(kﬁ1j ), where we non-dimensionalizg@ by 2 = (kinj jjF: jj2), with
iiFriiz (4 iF j2dx)™2 and the length and time scales are made non-dimensional by
scalingx by kmjl andt by kinj2= . We use a fourth-order Runge-Kutta scheme for time
marching and evaluate spatial derivatives via secondr@nde fourth-order, centered, -
nite differences, respectively, for points adjacent to wedls and for points inside the
domain. The Poisson equation is solved by using a fast-&wisslver [113] and is
calculated at the boundaries by using Thom's formula [89].

Since Kolmogorov forcing is inhomogeneous, we use the deosition = h i+ ©
and! = h i+ !9 where the angular brackets denote a time average and the fire
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uctuating part to calculate the ordgrvelocity and vorticity structure functions. Since
this is a wall-bounded ow, it is important to extract the fismpic parts of these structure
functions [89,129]. Furthermore, given our resolutidg@4%), it becomes necessary to use
the ESS procedure to extract exponent ratios. lllustrdtigdog ESS plots for velocity,
Sp(R), and vorticity, Sr!) (R), structure functions are shown in the left and right panels,
respectively, of Fig. 9; their slopes yield the exponeribstiat are plotted versus the order
p in Fig. 10. The Kraichnan-Leith-Batchelor (KLB) prediati® [75] for these exponent
ratios, namely, X' = KB rP=2and ;K18 = S8 r0, agree with our values for
p= 2 but not ,!)= 4+ velocity structure functions do not display multiscalifieft panel
of Fig. 10] whereas their vorticity analogs do [note the atuve of the plot in the right
panel of Fig. 10]. Similar results have been seen in DNS studith periodic boundary
conditions [130,123]. Additional results for PDFs of salegroperties can be obtained
from our DNS [89]; these are in striking agreement with expental results [126].
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-14
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8 log, , EZ(R) 6 Iogfo S‘S’(R)4
Figure 9. (Color online) (Left) Log-log ESS plots of the isotropic aof the ordep
velocity structure functionS, (R) versusS;(R); p = 3 (purple line with dots)p = 4
(red line with square)p = 5 (green line with triangles), angd = 6 (blue line with
circles). According to the KLB predictioB;(R)  R,. (Right) Log-log ESS plots
of the isotropic parts of the ordgrvorticity structure function$, (R) versusS;(R);
p = 3 (purple line with stars)p = 4 (red line with square)p = 5 (green line with
triangles), ang = 6 (blue line with circles).
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Figure 10. (Color online) (Left) Plots of the exponent ratfq; 2 versusp for the ve-
locity differences. (Right) Plots of the exponent rati¢s= 5 versusp for the vorticity
differences.
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6.4 The One dimensional Burgers Equation

In this Subsection we present a few representative nuniestiedies of the 1D Burgers
equation. The rst of these uses a pseudo-spectral methtid2M collocation points,
the2=3 dealising rule, and a fourth-order Runge-Kutta time-marglscheme. In the sec-
ond study of a stochastically forced Burgers equation (st@\) we use a fast-Legendre
method that yields results in the zero-viscosity limit [131
For the Burgers equation with no external forcing and suntly well-behaved initial

conditions, the velocity eld developshocks or jump discontinuities, which merge into
each other with time. The time at which the rst shock appésutssually denoted by .
For all times greater than, it is possible to calculate, analytically, the scaling exents

p for the equal-time structure functions\8g h [u(x+r;t) u(x)]Pi  CpjrjP+ ngrj,
where the rstterm comes from thramp, and the second term comes from the probability
of having a shock in the interv@j. As a consequence of this we havifractal scaling :
for 0 < p < 1the rstterm dominates leading tg, = p and forp > 1 the second one
dominates giving, = 1. This leads to an energy spectriigk) k 2. Representative
plots from our pseudo-spectral DNS, with= 10 2 and an initial conditionu(x) = sin(x)
(for whicht = 1) are shown in Fig. 11; the left panel shows plots of the véjoeid at
timest = 0; 1; andt = 1:5 and the right panel the energy spectrurh atl.

-10

log E(k)

-20

-25
0

0.5 3 35 4

15 2

log k
Figure 11. (Color online) (Left) énapshots of the solution of the Busgequation
obtained from our DNS with initial condition(x) = sinx at timest = 0 (blue),t =1
(black) andt = 2 (red). (Right) A representative log-log plot Bf(k) versusk, at time
t =1 for the Burgers equation with initial conditiongx) = sinx.

The stochastically forced Burgers equation has played apoitant role in
renormalization-group studies [131]. In particular, ddes a Gaussian random force
f (x;t) with zero mean and the following covariance in Fourier space

H(ky;t1)f (ko t2)i = 2Dojkj (t1  t2) (ki + ko); (69)

heref’\(k;t) is the spatial Fourier transform 6f(x;t), Dy is a constant, and the scaling
properties of the forcing is governed by the exponentFor positive values of , the
Burgers equation can be studied by using renormalizationfgtechniques; speci cally,
for =2 one recovers simple (Kardar-Parisi-Zhang or KPZ) scaliith e equal-time
exponent, = p. It was hoped that forcing with negative values ofin particular =
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1), which cannot be studied by renormalization-group meshadght yield multiscaling
of velocity structure functions.

However, our high-resolution study [131], which uses a-fagendre method, has
shown that the apparent multiscaling of structure fundiorthis stochastic model might
arise because of numerical artifacts. The general consénthat this stochastically forced
Burgers model should show bifractal scaling. In Fig. 12 wespnt representative plots
of the velocity eld (left panel, blue curve) and the scaliegponents (right panel) for this
model. We have obtained the data for these gures by usingtalfeagendre method with
218 collocation points.
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Figure 12. (Color online) (Left) A'snapshot of the velocity eld (jagdéine in blue)
in steady state and the force in red from our fast-Legenditb@deDNS of the stochas-
tically forced Burgers equation. (Right) A representafil@ of the exponents,, with
error-bars, for the equal-time velocity structure funemf the stochastically forced
Burgers equation; bifractal scaling is shown by the bladkidime; the deviations from
this are believed to arise from artefacts (see text).

0
X2 p

Numerical studies of the Burgers equation have also progetlulin elucidating bot-
tleneck structures in energy spectra [132,133](cf., theegspm in the left panel of Fig.
5). It turns out that such a bottleneck does not occur in tmeeational Burgers equation.
However, it does [134] occur in the hyperviscous one, in Whisual Laplacian dissipa-
tion operator is replaced by its" power; this is known as hyperviscosity for 1. We
show a representative compensated energy spectrum foaske & 4 in the left panel of
Fig. 13. We have obtained this from a pseudo-spectral DNB 2¥# collocation points.
The 1 limitis very interesting too since, in this limit, the hypéscous Burgers
equation maps on to the Galerkin-truncated version of thsérd Burgers equation. In
this Galerkin-truncated inviscid case, the Fourier motiesrhalise [135,136]; in a com-
pensated energy spectrum this shows ug ) k2, for largek [see the right panel of
Fig. 13 for the case = 200]. Such thermalisation effects in the Galerkin-truncatettE
equation have also attracted a lot of attention [137]; ardittk between bottlenecks and
thermalisation has been explored in our recent work [13#jhih we refer the interested
reader.
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Figure 13. (Color online) (ﬁeﬁ) A representative log-log plot of a Heteck in the
compensated energy spectridfE (k) of a hyperviscous Burgers equation with= 4.
(Right) A representative log-log plot & E (k) versusk for = 200 at timet = 30.

We see clear signatures of thermalization at ldrgsee text).

6.5 Turbulence with Polymer Additives

In this Subsection, we present a few results from our nurakstady [138] of the analogue
drag reduction by polymer additives in homogeneous, ipitrturbulence. This requires
a DNS of considerably greater complexity than the ones we ligscribed above. A
na've pseudospectral method cannot be used for the FENBdeIrgiven in Eqs. (18)
and (19): the polymer conformation tengdis symmetric and positive de nite; however,
in a practical implementation of the pseudo-spectral nmetihdoses this property. We
have employed a numerical technique that uses a Choleslkgngessition to overcome
this problem; we refer the reader to Ref. [138] for theseitieta

Our recent DNS of this model has shown that the natural analalgag reduction in
decaying, homogeneous, isotropic turbulence is dissipatduction; the percentage re-
duction DR can be de ned as

f;m p;m

DR 100; (70)

f:m

here the superscripfsandp stand, respectively, for the uid without and with polymers
and the superscriph indicates the time,, at which the cascade is completed. The de-
pendence of DR on the polymer concentration paranmeterd the Weissenberg number
may be found in Ref. [138]. Here we show how the addition ofypwrs reduces small-
scale structures in the turbulent ow: By a comparison of ib@surfaces of! j in the
left (without polymers) and right (with polymers) panelski§. 14, we see that slender
vorticity laments are suppressed by the polymers; thisiigualitative agreement with ex-
periments [93]. The PDFs ¢f j, with and without polymers (left panel of Fig. 15) con rm
that regions of large vorticity are reduced by polymers. Tigkt panel of Fig. 15 shows
how the polymers modify the energy spectrum in the dissipatange; this behaviour has
been seen in recent experiments [96], which study the seoniet structure function that
is related simply to the energy spectrum. For a full disaussif these and related results
we refer the reader to Ref. [101,138].
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Figure 14. (Color online) Constérjﬂ-j isosurfaces foj! j = hjl ji + at cascade

completion without and (Right) with polymers € 0:4); hjl ji is the mean and the
standard deviation gf j.
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Figure 15. (Color online) (Left) PDF oft at cascade completion without £ 0)
and with polymersd = 0:4). Note that regions of large vorticity are reduced on the
addition of polymers. (Right) Representative plots of thergy spectr& ™™ (k) or
E®™ (k) versusk for ¢ = 0:1 (blue dashed line) ant= 0:4 (solid line).
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7. Conclusions

Turbulence provides us with a variety of challenging proide We have tried to give
an overview of some of these, especially those that deal thélstatistical properties of
turbulence. The choice of topics has been in uenced, of suby the areas in which
we have carried out research. For complementary, recentiews we refer the reader to
Refs. [1-3]; we hope the other reviews and books that we hiéeé © will provide the
reader with further details.

We would like to thank CSIR, DST, and UGC (India) for suppartd SERC (lISc) for
computational resources.
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