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Abstract. We present an introductory overview of several challengingproblems in the statistical
characterisation of turbulence. We provide examples from �uid turbulence in three and two dimen-
sions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers
equation, and �uid turbulence in the presence of polymer additives.
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1. Introduction

Turbulence is often described as the last great unsolved problem of classical physics [1–3].
However, it is not easy to state what would constitute a solution of the turbulence prob-
lem. This is principally because turbulence is notone problembut a collection ofseveral
important problems: These include the characterisation and control of turbulent �ows,
both subsonic and supersonic, of interest to engineers suchas �ows in pipes or over cars
and aeroplanes [4,5]. Mathematical questions in this area are concerned with develop-
ing proofs of the smoothness, or lack thereof, of solutions of the Navier-Stokes and re-
lated equations [6–10]. Turbulence also provides a varietyof challenges for �uid dy-
namicists [5,11–13], astrophysicists [14–17], geophysicists [18,19], climate scientists [20],
plasma physicists [15–17,21,22], and statistical physicists [23–32]. In this brief overview,
written primarily for physicists who are not experts in turbulence, we concentrate on some
recent advances in the statistical characterisation of �uid turbulence [33] in three dimen-
sions, the turbulence of passive scalars such as pollutants[34], two-dimensional turbu-
lence in thin �lms or soap �lms [35,36], turbulence in the Burgers equation [37–39], and
�uid turbulence with polymer additives [40–42]; in most of this paper we restrict our-
selves tohomogeneous, isotropic turbulence[33,43,44]; and we highlight some similar-
ities between the statistical properties of systems at a critical point and those of turbu-
lent �uids [31,45,46]. Several important problems that we do not attempt to cover include
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Rayleigh-Bénard turbulence [47], super�uid turbulence [3,48], magnetohydrodyanmic tur-
bulence [15,17,21,22], the behaviour of inertial particles in turbulent �ows [49], the transi-
tion to turbulence in different experimental situations [50,51], and boundary-layer [52,53]
and wall-bounded [54] turbulence.

This paper is organised as follows: Section 2 gives an overview of some of the experi-
ments of relevance to our discussion here. In Section 3 we introduce the equations that we
consider. Section 4 is devoted to a summary of phenomenological approaches that have
been developed, since the pioneering studies of Richardson[55] and Kolmogorov [56], in
1941 (K41), to understand the behaviour of velocity and other structure functions inin-
ertial ranges. Section 5 introduces the ideas of multiscaling that have been developed to
understand deviations from the predictions of K41-type phenomenology. Section 6 con-
tains illustrative direct numerical simulations; it consists of �ve subsections devoted to
(a) three-dimensional �uid turbulence, (b) shell models, (c) two-dimensional turbulence in
soap �lms, (d) turbulence in the one-dimensional Burgers equation, and (e) �uid turbulence
with polymer additives. Section 7 contains concluding remarks.

2. Experimental Overview

Turbulent �ows abound in nature. They include the �ow of water in a garden pipe or in
rapids, the �ow of air over moving cars or aeroplanes, jets that are formed when a �uid is
forced through an ori�ce, the turbulent advection of pollutants such as ash from a volcanic
eruption, terrestrial and Jovian storms, turbulent convection in the sun, and turbulent shear
�ows in the arms of spiral galaxies. A wide variety of experimental studies have been
carried out to understand the properties of such turbulent �ows; we concentrate on those
that are designed to elucidate the statistical properties of turbulence, especially turbulence
that is, at small spatial scales and far away from boundaries, homogeneous and isotropic.
Most of our discussion will be devoted to incompressible �ows, i.e., low-Mach-number
cases in which the �uid velocity is much less than the velocity of sound in the �uid.

In laboratories such turbulence is generated in many different ways. A common method
uses a grid in a wind tunnel [57]; the �ow downstream from thisgrid is homogeneous and
isotropic, to a good approximation. Another technique use the von Kármán swirling �ow,
i.e., �ow generated in a �uid contained in a cylindrical tankwith two coaxial, counterrotat-
ing discs at its ends [58–60]; in the middle of the tank, far away from the discs, the turbulent
�ow is approximately homogeneous and isotropic. Electromagnetically forced thin �lms
and soap �lms [1,35,36] have yielded very useful results fortwo-dimensional turbulence.
Turbulence data can also be obtained from atmospheric boundary layers [61–64], oceanic
�ows [65], and astrophysical measurements [14]; experimental conditions cannot be con-
trolled as carefully in such natural settings as they can be in a laboratory, but a far greater
range of length scales can be probed than is possible in laboratory experiments.

Traditionally, experiments have measured the velocityu(x; t) at a single pointx at var-
ious timest by using hot-wire anemometers; these anemometers can have limitations in
(a) the number of components of the velocity that can be measured and (b) the spatial and
temporal resolutions that can be obtained [66,67]. Such measurements yield a time series
for the velocity; if the mean �ow velocityU >> u rms , the root-mean-square �uctuations
of the velocity, then Taylor's frozen-�ow hypothesis [5,33] can be used to relate temporal
separations�t to spatial separations�r , along the mean �ow direction via�r = U�t . The
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Reynolds numberRe = UL=� , whereU andL are typical velocity and length scales in
the �ow and� is the kinematic viscosity, is a convenient dimensionless control parameter;
at low Re �ows are laminar; as it increases increases there is a transition to turbulence
often via a variety of instabilities [50] that we will not cover here; and at largeRe fully
developed turbulence sets in. To compare different �ows it is often useful to employ the
Taylor-microscale Reynolds numberRe� = urms �=� , where the Taylor microscale� can
be obtained from the energy spectrum as described below (Sec. 6.3).

Re�nements in hot-wire anemometry [63,68] and �ow visualisation techniques such as
laser-doppler velocimetry (LDV) [66], particle-image velocimetry (PIV) [66,67], particle-
tracking velocimetry (PTV) [66,67], tomographic PIV [69],holographic PIV [70], and
digital holographic microscopy [71] have made it possible to obtain reliable measurements
of the Eulerian velocityu(x; t) (see Sec. 3) in a turbulent �ow. In the simplest forms of
anemometry a time series of the velocity is obtained at a given point in space; in PIV two
components of the velocity �eld can be obtained in a sheet at agiven time; holographic
PIV can yield all components of the velocity �eld in a volume.Components of the velocity
derivative tensorA ij � @j ui can also be obtained [63] and thence quantities such as the
energy dissipation rate per unit mass per unit volume� � � �

P
i;j (@i uj + @j ui )2, the

vorticity ! = r � u, and components of the rate of strain tensorsij � (@i uj + @j ui )=2,
where the subscriptsi andj are Cartesian indices. A discussion of the subtleties and lim-
itations of these measurement techniques lies beyond the scope of our overview; we refer
the reader to Refs. [63,66,67] for details. Signi�cant progress has also been made over the
past decade in the measurement of Lagrangian trajectories (see Sec. 3) of tracer particles
in turbulent �ows [58,59]. Given such measurements, experimentalists can obtain several
properties of turbulent �ows. We give illustrative examples of the types of properties we
consider.

Flow-visualisation methods often display large-scale coherent structures in turbulent
�ows. Examples of such structures plumes in Rayleigh-Bérnard convection [72], struc-
tures behind a splitter plate [73], and large vortical structures in two-dimensional or strat-
i�ed �ows [1,35,36]. In three-dimensional �ows, as we will see in greater detail below,
energy that is pumped into the �ow at the injection scaleL cascades, as �rst suggested
by Richardson [55], from large-scale eddies to small-scaleones till it is eventually dis-
sipated around and beyond the dissipation scale� d. By contrast, two-dimensional turbu-
lence [35,36,74,75] displays a dual cascade: there is an inverse cascade of energy from the
scale at which it is pumped into the system to large length scales and a direct cascade of
enstrophy
 = h1

2 ! 2i to small length scales. The inverse cascade of energy is associated
with the formation of a few large vortices; in practical realisations the sizes of such vor-
tices are controlled �nally by Ekman friction that is induced, e.g., by air drag in soap-�lm
turbulence.

Measurements of the vorticity! in highly turbulent �ows show that regions of large!
are organised into slender tubes. The �rst experimental evidence for this was obtained by
seeding the �ow with bubbles that moved preferentially to regions of low pressure [76] that
are associated with large-! regimes. For recent experiments on vortex tubes we refer the
reader to Ref. [77].

The time series of the �uid velocity at a given pointx shows strong �uctuations. It
is natural, therefore, to inquire into the statistical properties of turbulent �ows. From the
Eulerian velocityu(x; t) and its derivatives we can obtain one-point statistics, such as
probability distribution functions (PDFs) of the velocityand its derivatives. Velocity PDFs
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are found to be close to Gaussian distributions. However, PDFs of! 2 and velocity deriva-
tives show signi�cant non-Gaussian tails; for a recent study, which contains references to
earlier work, see Ref. [63]. The PDF of� is non-Gaussian too and the time series of�
is highly intermittent [78]; furthermore, in the limitRe ! 1 , i.e., � ! 0, the energy
dissipation rate per unit volume� approaches a positive constant value (see, e.g., Fig. 2 of
Ref. [79]), a result referred to as adissipative anomalyor thezeroth law of turbulence.

Various statistical properties of the rate-of-strain tensor, with componentssij , have been
measured [63]. The eigenvalues� 1; � 2; and� 3, with � 1 > � 2 > � 3 , of this tensor must
satisfy� 1 + � 2 + � 3 = 0 , with � 1 > 0 and� 2 < 0, in an incompressible �ow. The sign of
� 2 cannot be determined by this condition but its PDF shows that, in turbulent �ows,� 2 has
a small, positive mean value [80]; and the PDFs ofcos(! � ei ), whereei is the normalised
eigenvector corresponding to� i , show that there is a preferential alignment [63] of! and
e2. Joint PDFs can be measured too with good accuracy. An example of recent interest is a
tear-drop feature observed in contour plots of the joint PDFof, respectively, the second and
third invariants,Q = � tr (A2)=2 andR = � tr (A3)=3 of the velocity gradient tensorA ij
(see Fig. 11 of Ref. [63]); we display such a plot in Sec. 6 thatdeals with direct numerical
simulations.

Two-point statistics are characterised conventionally bystudying the equal-time, order-
p, longitudinal velocity structure function

Sp(r ) = h[(u(x + r ) � u(x)) � (r =r]p i ; (1)

where the angular brackets indicate a time average over the nonequilibrium statisti-
cal steady state that we obtain in forced turbulence (decaying turbulence is discussed
in Sec. 6.2). Experiments [33,81] show that, for separations r in the inertial range
� d << r << L ,

Sp(r ) � r � p ; (2)

with exponents� p that deviate signi�cantly from the simple scaling prediction [56]� K 41
p =

p=3, especially forp > 3, where� p < � K 41
p . This prediction, made by Kolmogorov in

1941 (hence the abbreviation K41), is discussed in Sec. 4 below; the deviations from this
simple scaling prediction are referred to as multiscaling (Sec. 5) and they are associated
with the intermittency of� mentioned above. We mention, in passing, that the log-Poisson
model due to She and Leveque provides a good parametrisationof the plot of� p versusp
[82].

The second-order structure functionS2(r ) can be related easily by Fourier transforma-
tion to the the energy spectrumE(k) = 4 �k 2hj~u(k)j2 i , where the tilde denotes the Fourier
transform,k = jk j, k is the wave vector, we assume that the turbulence is homogeneous
and isotropic, and, for speci�city, we give the formula for the three-dimensional case.
Since� K 41

2 = 2 =3, the K41 prediction is

E K 41(k) � k � 5=3; (3)

a result that is in good agreement with a wide range of experiments [see, e.g.,
Refs. [33,83]].

The structure functionsSp(r ) are the moments of the PDFs of the longitudinal velocity
increments�u jj � [(u(x + r ) � u(x)) � (r =r)]. [In the argument ofSp we user instead of
r when we consider homogeneous, isotropic turbulence.] These PDFs have been measured
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directly [84] and they show non-Gaussian tails; asr decreases, the deviations of these
PDFs from Gaussian distributions increases.

We now present a few examples of recent Lagrangian measurements [58,59] that have
been designed to track tracer particles in, e.g., the von Kármán �ow at large Reynolds
numbers. By employing state-of-the-art measurement techniques, such as silicon strip de-
tectors [59], used in high-energy-physics experiments, oracoustic-doppler methods [58],
these experiments have been able to attain high spatial resolution and high sampling rates
and have, therefore, been enable to obtain good data for acceleration statistics of La-
grangian particles and the analogues of velocity structurefunctions for them.

These experiments [59] �nd, for500 < Re � < 970, consistency with the Heisenberg-
Yaglom scaling form of the acceleration variance, i.e.,

hai aj i � � (3=2) � ( � 1=2) � ij ; (4)

whereai is the Cartesian componenti of the acceleration. Furthermore, there are indica-
tions of strong intermittency effects in the acceleration of particles and anisotropy effects
are present even at very largeRe� .

Order-p Lagrangian velocity structure functions are de�ned along aLagrangian trajec-
tory as

SL
i;p (� ) = h[vL

i (t + � ) � vL
i (t)]p i ; (5)

where the superscriptL denotes Lagrangian and the subscripti the Cartesian component.
If the time lag� lies in the temporal analogue of the inertial range, i.e.,� � � � � TL ,
where� � is the viscous dissipation time scale andTL is the time associated with the scale
L at which energy is injected into the system, then it is expected that

SL
i;p (� ) � � � L

i;p : (6)

The analogue of the dimensional K41 prediction is� L;K 41
i;p = p=2; experiments and simu-

lations [60] indicate that there are corrections to this simple dimensional prediction.
The best laboratory realisations of two-dimensional turbulence are (a) a thin layer of a

conducting �uid excited by magnetic �elds, varying both in space and time and applied
perpendicular to the layer [85], and (b) soap �lms [86] in which turbulence can be gener-
ated either by electromagnetic forcing or by the introduction of a comb, which plays the
role of a grid, in a rapidly �owing soap �lm. In the range of parameters used in typical
experimental studies [1,35,36,87] both these systems can be described quite well [88,89]
by the 2D Navier Stokes equation (see Sec. 3) with an additional Ekman-friction term,
induced typically by air drag; however, in some cases we mustalso account for corrections
arising from �uctuations of the �lm thickness, compressibility effects, and the Marangoni
effect. Measurement techniques are similar to those employed to study three-dimensional
turbulence [1,35,36]. Two-dimensional analogues of the PDFs described above for 3D tur-
bulence have been measured [see, e.g., Refs. [87]]; we will touch on these brie�y when
we discuss numerical simulations of 2D turbulence in Sec. 6.3. Velocity and vorticity
structure functions can be measured as in 3D turbulence; however, inertial ranges associ-
ated with inverse and forward cascades must be distinguished; the former shows simple
scaling with an energy spectrumE(k) � k � 5=3 whereas the latter has an energy spectrum
E(k) � k � (3+ � ) , with � = 0 if there is no Ekman friction and� > 0 otherwise. In the
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forward cascade velocity structure functions show simple scaling [87]; we are not aware
of experimental measurements of vorticity structure functions (we will discuss these in the
context of numerical simulations in Sec. 6.3).

We end this Section with a brief discussion of one example of turbulence in a non-
Newtonian setting, namely, �uid �ow in the presence of polymer additives. There are
two dimensionless control parameters in this case:Re and the Weissenberg numberW e,
which is a ratio of the polymer-relaxation time and a typicalshearing time in the �ow
(some studies [41] use a similar dimensionless parameter called the Deborah numberDe).
Dramatically different behaviours arise depending on the values of these parameters.

In the absence of polymers the �ow is laminar at lowRe; however, the addition of
small amounts of high-molecular-weight polymers can induceelastic turbulence[90], i.e.,
a mixing �ow that is like turbulence and in which the drag increases with increasingW e.
We will not discuss elastic turbulence in detail here; we refer the reader to Ref. [90] for an
overview of experiments and to Ref. [91] for representativenumerical simulations.

If, instead, the �ow is turbulent in the absence of polymers,i.e., we consider large-Re
�ows, then the addition of polymers leads to the dramatic phenomenon ofdrag reduction
that has been known since 1949 [92]; it has obvious and important industrial applications
[40,41,93–95]. Normally drag reduction is discussed in thecontext of pipe or channel
�ows: on the addition of polymers to turbulent �ow in a pipe, the pressure difference
required to maintain a given volumetric �ow ratedecreases, i.e., the drag is reduced and
a percentage drag reduction can be obtained from the percentage reduction in the pressure
difference. For a recent discussion of drag reduction in pipe or channel �ows we refer the
reader to Ref. [41]. Here we concentrate on other phenomena that are associated with the
addition of polymers to turbulent �ows that are homogeneousand isotropic. In particular,
experiments [93] show that the polymers lead to a suppression of small-scale structures
and important modi�cations in the second-order structure function [96]. We will return to
an examination of such phenomena when we discuss direct numerical simulations in Sec.
6.5.

3. Models

Before we discuss advances in the statistical characterization of turbulence, we provide a
brief description to the models we consider. We start with the basic equations of hydrody-
namics, in three and two dimensions, that are central to studies of turbulence. We also give
introductory overviews of the Burgers equation in one dimension, the advection-diffusion
equation for passive scalars, and the coupled NS and �nitelyextensible nonlinear elastic
Peterlin (FENE-P) equations for polymers in a �uid. We end this Section with a description
of shell models that are often used as highly simpli�ed models for homogeneous, isotropic
turbulence.

At low Mach numbers, �uid �ows are governed by the Navier-Stokes (NS) Eq. (7)
augmented by the incompressibility condition

@t u + ( u:r )u = �r p + � r 2u + f ;

r � u = 0 ; (7)

where we use units in which the density� = 1, the Eulerian velocity at pointr and timet is
u(r ; t), the external body force per unit volume isf , and� is the kinematic viscosity. The
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pressurep can be eliminated by using the incompressibility condition[5,33,43] and it can
then be obtained from the Poisson equationr 2p = � @ij (ui uj ). In the unforced, inviscid
case, the momentum, the kinetic energy, and the helicityH �

R
dr ! � u=2 are conserved;

here! � r � u is the vorticity. The Reynolds numberRe � LV=� , whereL andV are
characteristic length and velocity scales, is a convenientdimensionless control parameter:
The �ow is laminar at lowRe and irregular, and eventually turbulent, asRe is increased.

In the vorticity formulation the NS equation 7 becomes

@t ! = r � u � ! + � r 2! + r � f ; (8)

the pressure is eliminated naturally here. This formulation is particularly useful is two
dimensions since! is a pseudo-scalar in this case. Speci�cally, in two dimensions, the NS
equation can be written in terms of! and the stream function :

@t ! � J ( ; ! ) = � r 2! + � E ! + f ;

r 2 = ! ;

J ( ; ! ) � (@x  )(@y ! ) � (@x ! )(@y  ): (9)

Here� E is the coef�cient of the air-drag-induced Ekman-friction term. The incompress-
ibility constraint

@x ux + @y uy = 0 (10)

ensures that the velocity is uniquely determined by via

u � (� @y  ; @x  ): (11)

In the inviscid, unforced case we have more conserved quantities in two dimensions than
in three; the additional conserved quantities areh1

2 ! n i , for all powersn, the �rst of which
is the mean enstrophy,
 = h1

2 ! 2i .
In one dimension (1D) the incompressibility constraint leads to trivial velocity �elds.

It is fruitful, however, to consider the Burgers equation [37], which is the NS equation
without pressure and the incompressibility constraint. This has been studied in great detail
as it often provides interesting insights into �uid turbulence. In 1D the Burgers equation is

@t v + v@x v = � r 2v + f; (12)

where f is the external force and the velocityv can have shocks since the system is
compressible. In the unforced, inviscid case the Burgers equation has in�nitely many
conserved quantities, namely,

R
vn dx for all integersn. In the limit � ! 0 we can

use the Cole-Hopf transformation,v = @x 	 , f � � @x F , and	 � 2� ln � , to obtain
@t � = �@2

x � + F � =(2� ), a linear partial differential equation (PDE) that can be solved
explicitly in the absence of any boundary [38,39].

Passive scalars such as pollutants can be advected by �uids.These �ows are governed
by the advection-diffusion equation

@t � + u:r � = � r 2� + f � ; (13)

where� is the passive-scalar �eld, the advecting velocity �eldu satis�es the NS equation 7,
andf � is an external force. The �eld� is passivebecause it does not act on or modifyu.
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Note that Eq.( 13) is linear in� . It is possible, therefore, to make considerable analyti-
cal progress in understanding the statistical properties of passive-scalar turbulence for the
simpli�ed model of passive-scalar advection due to Kraichnan [34,97]; in this model each
component off � is a zero-mean Gaussian random variable that is white in time; further-
more, each component ofu is taken to be a zero-mean Gaussian random variable that is
white in time and which has the covariance

hui (x; t)uj (x + r ; t0)i = 2 D ij � (t � t0); (14)

the Fourier transform ofD ij has the form

~D ij (q) /
�
q2 +

1
L 2

� � (d+ � )=2
e� �q 2 �

� ij �
qi qj

q2

�
; (15)

q is the wave vector,L is the characteristic large length scale,� is the dissipation scale,
and� is a parameter. In the limit ofL ! 1 and� ! 0 we have, in real space,

D ij (r ) = D 0� ij �
1
2

dij (r ) (16)

with

dij = D1r � �
(d � 1 + � )� ij � �

r i r j

r 2

�
: (17)

D1 is a normalization constant and� a parameter; for0 < � < 2 equal-time passive-scalar
structure functions show multiscaling [34].

We turn now to an example of a model for non-Newtonian �ows. This model combines
the NS equation for a �uid with the �nitely extensible nonlinear elastic Peterlin (FENE-P)
model for polymers; it is usedinter alia to study the effects of polymer additives on �uid
turbulence. This model is de�ned by the following equations:

@t u + ( u:r )u = � r 2u +
�
� P

r :[f (rP )C] � r p; (18)

@t C+ u:rC = C:(r u) + ( r u)T :C �
f (rP )C � I

� P
: (19)

Here � is the kinematic viscosity of the �uid,� the viscosity parameter for the solute
(FENE-P),� P the polymer relaxation time,� the solvent density,p the pressure,(r u)T

the transpose of(r u), C�� � h R� R� i the elements of the polymer-conformation tensor
C (angular brackets indicate an average over polymer con�gurations),I the identity ten-
sor with elements� �� , f (rP ) � (L 2 � 3)=(L 2 � r 2

P ) the FENE-P potential that ensures
�nite extensibility, rP �

p
T r(C) andL the length and the maximum possible extension,

respectively, of the polymers, andc � �= (� + � ) a dimensionless measure of the polymer
concentration [98].

The hydrodynamical partial differential equations (PDEs)discussed above are dif�cult
to solve, even on computers via direct numerical simulation(DNS), if we want to resolve
the large ranges of spatial and temporal scales that become relevant in turbulent �ows. It
is useful, therefore, to consider simpli�ed models of turbulence that are numerically more
tractable than these PDEs.Shell modelsare important examples of such simpli�ed models;
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they have proved to be useful testing grounds for the multiscaling properties of structure
functions in turbulence. We will consider, as illustrativeexamples, the Gledzer-Ohkitani-
Yamada (GOY) shell model [99] for �uid turbulence in three dimensions and a shell model
for the advection-diffusion equation [100].

Shell models cannot be derived from the NS equation in any systematic way. They
are formulated in a discretised Fourier space with logarithmically spaced wave vectors
kn = k0

~� n ; ~� > 1; associated with shellsn and dynamical variables that are the complex,
scalar velocitiesun . Note thatkn is chosen to be a scalar: spherical symmetry is implicit
in GOY-type shell models since their aim is to study homogeneous, isotropic turbulence.
Given thatkn andun are scalars, shell models cannot describe vortical structures or enforce
the incompressibility constraint.

The temporal evolution of such a shell model is governed by a set of ordinary differen-
tial equations that have the following features in common with the Fourier-space version
of the NS equation [12]: they have a viscous-dissipation term of the form� �k 2

n un , they
conserve the shell-model analogues of the energy and the helicity in the absence of viscos-
ity and forcing, and they have nonlinear terms of the form{kn un un 0 that couple velocities
in different shells. In the NS equation all Fourier modes of the velocity affect each other
directly but in most shell models nonlinear terms limit direct interactions to shell velocities
in nearest- and next-nearest-neighbour shells; thus direct sweeping effects, i.e., the advec-
tion of the largest eddies by the the smallest eddies, are present in the NS equation but not
in most shell models. This is why the latter are occasionallyviewed as a highly simpli�ed,
quasi-Lagrangian representation (see below) of the NS equation.

The GOY-model evolution equations have the form

[
d
dt

+ �k 2
n ]un = i (an un +1 un +2 bn un � 1un +1 + cn un � 1un � 2)� + f n ; (20)

where complex conjugation is denoted by� , the coef�cients are chosen to bean = kn ,
bn = � �k n � 1, cn = � (1 � � )kn � 2 to conserve the shell-model analogues of the energy
and the helicity in the inviscid, unforced case; in any practical calculation1 � n � N ,
whereN is the total number of shells and we use the boundary conditionsun = 0 8 n < 1
or 8 n > N ; as mentioned abovekn = ~� n k0 and many groups use~� = 2 , � = 1 =2,
k0 = 1 =16, andN = 22. The logarithmic discretisation here allows us to reach very high
Reynolds number, in numerical simulations of this model, even with such a moderate value
of N . For studies of decaying turbulence we setf n = 0 ; 8 n; in the case of statistically
steady, forced turbulence [45] it is convenient to usef n = (1 + {)5 � 10� 3. For such a
shell model the analogue of a velocity structure function isSp(kn ) = hju(kn )jp i and the
energy spectrum isE(kn ) = ju(kn )j2=kn .

It is possible to construct other shell models, by using arguments similar to the ones we
have just discussed, for other PDEs such as the advection-diffusion equation. Its shell-
model version is

[
d
dt

+ �k 2
n ]� = i [kn (� n +1 un � 1 � � n � 1un +1 ) �

kn � 1

2
(� n � 1un � 2 + � n � 2un � 1) �

kn � 1

2
(� n +2 un +1 + � n +1 un +2 )] � (21)
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For this model, the advecting velocity �eld can either be obtained from the numerical
solution of a �uid shell model, like the GOY model above, or byusing a shell-model ver-
sion of the type of stochastic velocity �eld introduced in the Kraichnan model for passive-
scalar advection [46]. A shell-model analogue for the FENE-P model of �uid turbulence
with polymer additives may be found in Ref. [101].

3.1 Eulerian, Lagrangian, Quasi-Lagrangian frameworks

The Navier-Stokes Eq.( 7) is written in terms of the Eulerianvelocity u at positionx and
timet; i.e., in the Eulerian case we use a frame of reference that is�xed with respect to the
�uid; this frame can be used for any �ow property or �eld. The Lagrangian framework [5]
uses a complementary point of view in which we �x a frame of reference to a �uidparticle;
this �ctitious particle moves with the �ow and its path is known as a Lagrangian trajectory.
Each Lagrangian particle is characterised by its position vectorr 0 at timet0; its trajectory
at some later timet is R = R (t; r 0 ; t0) and the associated Lagrangian velocity is

v =
�

dR
dt

�

r 0

: (22)

We will also employ the quasi-Lagrangian [102,103] framework that uses the following
transformation for an Eulerian �eld (r ; t):

 ̂ (r ; t) �  [r + R (t; r 0 ; 0); t]; (23)

here ̂ is the quasi-Lagrangian �eld andR (t; r 0 ; 0) is the position at timet of a Lagrangian
particle that was at pointr 0 at timet = 0 .

As we have mentioned above, sweeping effects are present when we use Eulerian veloc-
ities. However, since Lagrangian particles move with the �ow, such effects are not present
in Lagrangian and quasi-Lagrangian frameworks. In experiments neutrally buoyant tracer
particles are used to obtain Lagrangian trajectories that can be used to obtain statistical
properties of Lagrangian particles.

4. Homogeneous Isotropic Turbulence: Phenomenology

In 1941 Kolmogorov [56] developed his classic phenomenological approach to turbulence
that is often referred to as K41. He used the idea of the Richardson cascade to provide an
intuitive, though not rigorous, understanding of the power-law behaviours we have men-
tioned in Sec. 2. We give a brief introduction to K41 phenomenology and related ideas;
for a detailed discussion the reader should consult Ref. [33].

First we must recognise that there are two important length scales: (a) The largeintegral
length scaleL that is comparable to the system size and at which energy injection takes
place; �ow at this scale depends on the details of the system and the way in which energy
is injected into it; (b) and the smalldissipation length scale� d below which energy dissi-
pation becomes signi�cant. The inertial range of scales, inwhich structure functions and
energy spectra assume the power-law behaviours mentioned above (Sec. 2), lie in between
L and� ; asRe increases so does the extent of the inertial range.
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In K41 Kolmogorov made the following assumptions: (a) Fullydeveloped 3D turbu-
lence is homogeneous and isotropic at small length scales and far away from boundaries.
(b) In the statistical steady state, the energy dissipationrate per unit volume� remains �-
nite and positive even whenRe ! 1 (the dissipative anomaly mentioned above). (c) A
Richardson-type cascade is set up in which energy is transferred by the breakdown of the
largest eddies, created by inherent instabilities of the �ow, to smaller ones, which decay
in turn into even smaller eddies, and so on till the sizes of the eddies become comparable
to � d where their energy can then be degraded by viscous dissipation. AsRe ! 1 all
inertial-range statistical properties are uniquely and universally determined by the scaler
and� and are independent ofL , � and� d.

Dimensional analysis then yields the scaling form of the order-p structure function

SK 41
p (r ) � C� p=3r p=3; (24)

since� has dimensions of(length)2(time )� 3. [It is implicit here that the eddies, at any
given level of the Richardson cascade, are space �lling; if not, � is intermittent and scale
dependent as we discuss in Sec. 5 on multiscaling.] Thus� K 41

p = p=3; for p = 2
we getSK 41

2 (r ) � r 2=3 whose Fourier transform is related to the K41 energy spectrum
E(k)K 41 � k � 5=3 (left panel of Fig. 1).

The prediction� K 41
3 = 1 , unlike all others K41 results, can be derived exactly for the

NS equation in the limitRe ! 1 . In particular, it can be shown that [33,44]

S3(`) � �
4
5

�`; (25)

an important result, since it is both exact and nontrivial.
It is often useful to discuss K41 phenomenology by introducingv` , the velocity associ-

ated with the inertial-range length scale`; clearly

v` � � 1=3`1=3: (26)

The time scalet ` � `
v`

, the typical time required for the transfer of energy from scales of
order` to smaller ones. This yields the rate of energy transfer

� �
v2

`

t `
�

v3
`

`
: (27)

Given the assumptions of K41, there is neither direct energyinjection nor molecular dissi-
pation in the inertial range. Therefore, the energy �ux� becomes independent of` and is
equal to the mean energy dissipation rate� , which can now be written as

� � v3
` =`: (28)

A similar prediction, for the two-point correlations of a passive-scalar advected by a
turbulent �uid is due to Obukhov and Corsin; we shall not discuss it here but refer the
reader to Ref. [104,105].

As we have mentioned above, the cascade of energy in 3D turbulence is replaced in
2D turbulence by a dual cascade: an inverse cascade of energyfrom the injection scale
to larger length scales and a forward cascade of enstrophy [35,36,74,75]. In the inverse

Pramana – J. Phys.,Vol. xx, No. x, xxx xxxx 11



-1 0 1 2 3 4 5 6
-16

-14

-12

-10

-8

-6

-4

-2

0

2

log k

lo
g 

E
(k

)

(a) 

,
0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p

z p

(b) 

Figure 1. (Color online) (a) A representative log-log plot of the energy spectrum
E (k) versusk, from a numerical simulation of the GOY shell model with 22 shells.
The straight black line is a guide to the eye indicating K41 scalingk � 5=3 . (b) A plot of
the equal-time scaling exponents� p versusp, with error bars, obtained from the GOY
shell model. The straight black line (color online) indicates K41 scalingp=3.

cascade the energy accumulation at large length scales is controlled eventually by Ekman
friction. The analogue of K41 phenomenology for this case isbased upon physical argu-
ments due to Kraichnan, Leith and Batchelor [75]. Given thatthere is energy injection
at some intermediate length scale, kinetic energy get redistributed from such intermediate
scales to the largest length scale. The scaling result for the two cascades gives us a kinetic
energy spectrum that has ak � 5=3 form in the inverse-cascade inertial range and ak � 3 form
(in the absence of Ekman friction) in the forward-cascade inertial range.

5. From scaling to multiscaling

In equilibrium statistical mechanics, equal-time and time-dependent correlation functions,
in the vicinity of a critical point, display scaling properties that are well understood. For
example, for a spin system ind dimensions close to its critical point, the scaling forms of
the equal-time correlation functiong(r ; �t; h) and its Fourier transform~g(k; �t; h), for a pair
of spins separated by a distancer , are as follows:

g(r ; �t; h) �
G(r �t (�� ) ; h=�t ( ��) )

r d� 2+�� ; (29)

~g(k; �t; h) �
~G(k=�t (�� ) ; h=�t ( ��) )

k2� �� : (30)

Here the reduced temperature�t = ( T � Tc)=Tc, whereT andTc are, respectively, the
temperature and the critical temperature, and the reduced �eld h = H=kB Tc, with H
the external �eld andkB the Boltzmann constant. The equal-time critical exponents�� , ��
and �� are universal for a given universality class (the unconventional overbars are used
to distinguish these exponents from the kinematic viscosity, etc.). The scaling functions
G and ~G can be made universal too if two scale factors are taken into account [106].
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Precisely at the critical point(�t = 0 ; h = 0) these scaling forms lead to power-law decays
of correlation functions; and, as the critical point is approached, the correlation length�
diverges [e.g., as� � �t ( � �� ) if h = 0 ]. Time-dependent correlation functions also display
scaling behaviour; e.g., the frequency (! ) dependent correlation function has the scaling
form to Eq. (30).

~g(k; ! ; �t; h) �
~G(k � z !; k= �t (�� ) ; h=�t ( ��) )

k2� �� : (31)

This scaling behaviour is associated with the divergence ofthe relaxation time

� � � z ; (32)

referred to as critical slowing down; herez is the dynamic scaling exponent.
In most critical phenomena in equilibrium statistical mechanics we obtain the simple

scaling forms summarised in the previous paragraph. The inertial-range behaviours of
structure functions in turbulence (Secs. 2 and 3) are similar to the power-law forms of
these critical-point correlation functions. This similarity is especially strong at the level of
K41 scaling (Sec. 4); however, as we have mentioned earlier,experimental and numerical
work suggests signi�cantmultiscalingcorrections to K41 scaling with the equal-time mul-
tiscaling exponents� p 6= � K 41

p ; in brief, multiscaling implies that� p is not a linear function
p; indeed [33] it is a monotone increasing nonlinear functionof p (see right panel of Fig.
1). The multiscaling of equal-time structure functions seems to be a common property of
various forms of turbulence, e.g., 3D turbulence and passive-scalar turbulence.

The multifractal model [33,107,108] provides a way of rationalising multiscaling cor-
rections to K41. First we must give up the K41 assumption of only one relevant length
scale` and the simple scaling form of Eq.( 28). Thus we write the equal-time structure
function as

Sp(`) = Cp(�` )p=3(
`
L

)� p ; (33)

where� p � � p � p=3 is the anomalous part of the scaling exponent. We start with the
assumption that the turbulent �ow possesses a range of scaling exponentsh in the set
I = ( hmin ; hmax ). For eachh in this range, there is a set� h (in real space) of fractal
dimensionD(h), such that, as̀=L ! 0,

�v ` (r ) � `h ; (34)

if r 2 � h . The exponents(hmin ; hmax ) are postulated to be independent of the mechanism
responsible for the turbulence. Hence

Sp(`) �
Z

I
d� (h)( `=L )ph +3 � D (h) ; (35)

where theph term comes fromp factors of(`=L ) in Eq. (34) and the3 � D(h) term
comes from an additional factor of(`=L )3� D (h) , which is the probability of being within
a distance of� ` of the set� h of dimensionD(h) that is embedded in three dimensions.
The co-dimensionD(h) and the exponentshmin andhmax are assumed to be universal
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[33]. The measured� (h) gives the weight of the different exponents. In the limit`=L ! 0
the method of steepest descent yields

� p = inf h [ph + 3 � D(h)]: (36)

The K41 result follows from Eq. (36) if we allow for only one value ofh, namely,h = 1 =3
and setD(h) = 3 . For more details we refer the reader to [33,107,108]; the extension to
time-dependent structure functions is given in Refs. [45,46,109].

Exact results for multiscaling can be obtained for the Kraichnan model of passive-scalar
turbulence. We outline the essential steps below; details may be found in Ref. [34].

The second-order correlation function is de�ned as

C2(l ; t ) = h� (x; t )� (x + l ; t )i : (37)

Here the angular brackets denote averaging over the statistics of the velocity and the force
which are assumed to be independent of one another [34]. Thisequation of motion

@t C2(l ; t) = h@t � (x ; t)� (x + l ; t)i + h� (x; t)@t � (x + l ; t)i (38)

is easy to solve by �rst by using the advection-diffusion equation and then using Gaussian
averages to obtain [34]

@t C2(l ) = D1l1� d@l [(d � 1)ld� 1+ � C2(l )] + 2 �l 1� d@l [ld� 1@l C2(l )] + �(
l

L 1
);

(39)

where�( l
L 1

) is the spatial correlation of the force [34] (notice that we now work with just
the scalarl for the isotropic case). In the stationary state the time derivative vanishes on
the left hand side. We impose the boundary conditions that, as l ! 1 , C2(l ) = 0 , and
C2(l ) remains �nite whenl ! 0, whence

C2(l ) =
1

(d � 1)D1

Z 1

l

r 1� d

r � + l �
d

dr
Z r

0
�(

r
L 1

)yd� 1dy: (40)

In the limit ld << l << L 1, the second-order structure function has the following scaling
form,

S2(l ) � 2[C2(0) � C2(l )] �
2

(2 � � )(d � 1)D1
�(0) l2� � ; (41)

i.e., equal-time exponents� �
2 = 2 � � ; this result follows from dimensional arguments as

well. For order-p correlation functions the equivalent of Eq. (38) can be written symboli-
cally as [34]

@t Cp = � M pCp + DpCp + F 
 Cp� 2 (42)

where the operatorM p is determined by the advection term,Dp is the dissipative operator,
andF is the spatial correlator of the force. In the limit of vanishing diffusivity, and in
stationary state, the above equation reduces to
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M pCp = F 
 Cp� 2: (43)

The associated homogeneous and inhomogeneous equations can be solved separately. By
assuming scaling behaviour, we can extract the scaling exponent from simple dimensional
analysis (superscriptdim) to obtain

� dim
p =

p
2

(2 � � ): (44)

The solutionZp(� r 1; � r 2:::� r p) of the homogeneous part of Eq. (43) are called the
zero-mode of the operatorM p. The zero-modes have the scaling property

Zp(� r 1; � r 2:::� r p) � � � zero
p Zp(r 1; r 2:::r p): (45)

Their scaling exponents� zero
p cannot be determined from dimensional arguments. The

exponents� zero
p are also called anomalous exponents. And for a particular order-p the

actual scaling exponent is

� p = min( � zero
p ; � dim

p ) (46)

This is how multiscaling arises in Kraichnan model of passive-scalar advection. The prin-
cipal dif�culty lies in solving the problem with a particular boundary condition. In recent
times the following results have been obtained: Although the scaling exponents for the
zero-modes has not been obtained exactly for anyp, except forp = 2 (in which case
the anomalous exponent is actually subdominant), perturbative methods have yielded the
anomalous exponents. Also, it has been shown that the multiscaling disappears for� > 2
or � < 0 and that, although the scaling exponents are universal, theamplitudes depend on
the force correlator and hence the structure functions themselves are not universal. These
results have been well supported by numerical simulations.

Several studies of the multiscaling of equal-time structure functions have been carried
out as outlined above. By contrast there are fewer studies ofthe multiscaling of time-
dependent structure functions. We give an illustrative example for the Kraichnan model
of passive-scalar advection. For simplicity, we look at theEulerian second-order time-
dependent structure function which is de�ned, in Fourier space, as [46,110]

~F � (k; t0; t) = h~� (� k ; t0)~� (k; t)i : (47)

In order to arrive at a scaling form for~F (k; t0; t), we look at its equation of motion:

@~F � (k; t0; t)
@t

= h~� (� k; t0)
@~� (k; t)

@t
i : (48)

A spatial Fourier transform of the advection-diffusion equation (13) yields

@~� (k)
@t

= i
Z

kj uj (q)~� (k � q)ddq � �k j kj
~� (k); (49)

so (48) maybe expanded as

d ~F � (k; t0; t)
dt

= ik j

Z
h~� (� k; t0)uj (q)~� (k � q; t)i ddq � �k j kj h~� (� k; t0)~� (k; t)i :

(50)
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The above equation is solved with the help of Gaussian averaging. The �rst term reduces
to

h~� (� k; t0)uj (q)~� (k � q; t)i =
Z 1

0
huj (t)ui (t0)ih~� (� k ; t0)

�
�u i (t0)

~� (k � q; t0)i dt0:

(51)

Equations (14) and (49) yield

d ~F (k; t0; t)
dt

= � 2ki kj

Z 1

0
D ij ddq ~F (k; t0; t): (52)

Since2
R1

0 D ij ddq = D 0(L ) � L � , the equation of motion of the second-order structure
function for the Eulerian �eld becomes

@F � (r; t 0; t)
@t

= L � @2F � (r; t 0; t)
@r2

; (53)

whence [46]

~F (k; t0; t) = � (k; t0)e� k 2 L � t : (54)

Thus it is clear that within the Eulerian framework we get a simple dynamic scaling expo-
nentz = 2.

A similar analysis for the quasi-Lagrangian time-dependent structure function [46] gives

@F (r; t 0; t)
@t

= ( D 0� ij � D ij )
@F (r; t 0; t)

@ri @rj
� dij

@F (r; t 0; t)
@ri @rj

: (55)

A Fourier transform of Eq. (55) yields~F (k; t0; t) / exp[� t=� ], where� = k � � 2, which
implies a simple dynamic scaling exponentz = 2 � � in the quasi-Lagrangian framework.
In Sec. 6.2 we discuss dynamic scaling and multiscaling in shell models.

6. Numerical Simulations

Numerical studies of the models described in Sec. 3 have contributed greatly to our un-
derstanding of turbulence. In this Section we give illustrative numerical studies of the 3D
Navier-Stokes equation (Sec. 6.1), GOY and advection-diffusion shell models (Sec. 6.2),
the 2D Navier-Stokes equation (Sec. 6.3), the 1D Burgers equation (Sec. 6.4) and the
FENE-P model for polymer additives in a �uid (Sec. 6.5).

6.1 3D Navier-Stokes Turbulence

We concentrate on the statistical properties of homogeneous, isotropic turbulence, so we
restrict ourselves periodic boundary conditions. Even with these simple boundary condi-
tions, simulating these �ows is a challenging task as a wide range of length scales has to be
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resolved. Therefore, state-of-the-art numerical simulations use pseudo-spectral methods
that solve the Navier-Stokes equations via Fast Fourier transforms [111,112] typically on
supercomputers. For a discussion on the implementation of the pseudo-spectral method
we refer the reader to Refs. [111,112]. We outline this method below: (a) Time marching
is done by using either a second-order, slaved Adams-Bashforth or a Runge-Kutta scheme
[113]. (b) In Fourier space the contribution of the viscous term is -�k 2u. (c) To avoid
the computational costs of evaluating the convolution because of the non-linear term, it is
�rst calculated in real space and then Fourier transformed;hence the name pseudo-spectral
method. (d) In Fourier space the discretized Navier-Stokestime evolution us

un +1 = exp( � �k 2�t )un +
1 � exp(� �k 2�t )

�k 2 Pij [(3=2)N n � (1=2)N n � 1]

wheren is the iteration number,N indicates the non-linear term, andPij = ( � ij � ki kj =k2)
is the transverse projector which guarantees incompressibility. (e) To suppress aliasing
errors we use a2=3 dealiasing scheme [112].

We give illustrative results from a direct numerical simulation DNS with10243 that we
have carried out. This study uses the stochastic forcing of [114] and has attained a Taylor
microscale Reynolds numberRe� � 100, whereRe� = urms �=� ; urms =

p
2E=3

is the root-mean-square velocity and the Taylor microscale� =
p P

E(k)=
P

k2E(k).
For state-of-the-art simulations with up to40963 collocation points we refer the reader to
Ref. [79]. As we had mentioned in Sec. 2, regions of high vorticity are organised into
slender tubes. These can be visualised by looking at isosurfaces ofj! j as shown in the
representative plots of Figs 2 and 3. The right panel of Fig. 2shows the PDF ofj! j;
this has a distinctly non-Gaussian tail. The structure of high-j! j vorticity tubes shows
up especially clearly in the plots of Fig. 3, the second and third panels of which show
successively magni�ed images of the central part of the �rstpanel (for a40963 version see
Ref. [79]).
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Figure 2. (Color online) (Left) Isosurface plot ofj! j with j! j equal to its mean value.
(Right) A semilog plot of the PDF ofj! j.

One method to look at these structures is to study the joint PDF of the invariantsQ =
� tr (A2)=2 andR = � tr (A3)=3 of the velocity gradient tensor. The zero-discriminant or
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Figure 3. (Color online) (Left) Isosurface plot ofj! j with j! j equal to one standard
deviation more than its mean value. (Center) A magni�ed version of the central part of
the panel on the left. (Right) A magni�ed version of the central part of the panel in the
middle.
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Figure 4. (Color online) (Left) Joint PDFP(Q� ; R � ) of R � = R=hsij sij i 3=2 and
Q� = Q=hsij sij i calculated from our DNS. The black curve represents the zero-dis-
criminant (or Vieillefosse) line27R2=4 + Q3 = 0 . The contour levels are logarith-
mically spaced. (Right) PDF of thex-component of the velocity (here� denotes the
standard deviation); the parabolic curve is a Gaussian thatis drawn for comparison.
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Figure 5. (Color online) (Left) The compensated energy spectrumk5=3E (k) versus
k� , where� is the dissipation scale from our DNS (see text). (Right) PDFs of velocity
increments that show marked deviation from Gaussian behaviour (innermost curve),
especially at small length scales; the outermost PDF is for the velocity increment with
the shorter length scale.

Vieillefosse lineD � 27R2=4 + Q3 = 0 divides the QR plane in different regions. The
region withD > 0 is vorticity dominant (one of the eigenvalues ofA is greater than zero
whereas the other two eigenvalues are imaginary); the region D < 0 is strain dominated
(all the eigenvalues ofA are real). The regionsD > 0 andD < 0 can be further divided
into two more quadrants depending upon the sign of the eigenvalues. In the left panel of
Fig. 4 we show a representative contour plot of the joint PDFP(Q� ; R� ) obtained from
our DNS. The shape of the contour is like a tear-drop, as in experiments [63], with a tail
along the lineD = 0 in the region whereR� > 0 andQ� < 0. The plot indicates that, in a
numerical simulation, most of the structures are vortical but there also exist regions of large
strain. For a more detailed discussion of the above classi�cation of different structures we
refer the reader to [63,115].

The left panel of Fig. 5 shows a plot of the compensated energyspectrumk5=3E(k)
versusk� (� is the dissipation scale in our DNS). The �at portion at lowk� indicates
agreement with the K41 formE K 41(k) � k � 5=3. There is a slight bump after that; this
is referred to as a bottleneck (see Ref. [116] and Sec 6.4); the spectrum then falls in the
dissipation range. The right panel of Fig. 5 shows PDFs of velocity increments at different
scalesr . The innermost curve is a Gaussian for comparison; the non-Gaussian deviations
increase asr decreases.

We do not provide data for the multiscaling of velocity structure functions in the 3D
Navier-Stokes equation. We refer the reader to Ref. [60] fora recent discussion of such
multiscaling. Often the inertial range is quite limited in such studies. This range can be
extended somewhat by using the extended-self-similarity (ESS) procedure [117] in which
the slope of a log-log plots of the structure functionSp versusSq yields the exponent ratio
� p=�q; this procedure is especially useful ifq = 3 since� 3 = 1 for the 3D Navier-Stokes
case. We illustrate the use of this ESS procedure in Sec. (6.3) on 2D turbulence.

The methods of statistical �eld theory have been used with some success to study the
statistical properties of a randomly forced Navier-Stokesequation [25,26,30,31]. The
stochastic force here acts at all length scales; it is Gaussian and has a Fourier-space co-
variance proportional tok1� y . For y � 0, a simple perturbation theory leads to infrared
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divergences; these can be controlled by a dynamical renormalization group for suf�ciently
smally; for y = 4 this yields a K41-typek � 5=3 spectrum at the one-loop level. This value
of y is too large to trust a low-y, one-loop result; also, fory � 3, the sweeping effect
leads to another singularity [118]. Nevertheless, this randomly forced model has played an
important role historically. Thus it has been studied numerically via the pseudo-spectral
method [119,120]. These studies have shown that, even though the stochastic forcing de-
stroys the vorticity tubes that we have described above, it yields multiscaling of velocity
structure that is consistent, fory = 4 , with the analogous multiscaling in the conventional
3D Navier-Stokes equation, barring logarithmic corrections. We will discuss the analogue
of this problem for the stochastically forced Burgers equation in Sec. 6.4.

6.2 Shell Models

Even though shell models are far simpler than their parent partial differential equations
(PDEs), they cannot be solved analytically. The multiscaling of equal-time structure func-
tions in such models has been investigated numerically by several groups; an overview of
earlier work and details about numerical methods for the stiff shell-model equations can
be found in Refs. [45,46,121]. An illustrative plot of equal-time multiscaling exponents
for the GOY shell model is given in the right panel of Fig. 1.

We devote the rest of this Subsection to a discussion of the dynamic multiscaling of
time-dependent shell-model structure functions that has been elucidated recently by our
group [45,46,109,110]. So far, detailed numerical studiesof such dynamic multiscaling has
been possible only in shell models. We concentrate on time-dependent velocity structure
functions in the GOY model and their passive-scalar analogues in the advection-diffusion
shell model.

In a typical decaying-turbulence experiment or simulation, energy is injected into the
system at large length scales (smallk); it then cascades to small length scales (largek);
eventually viscous losses set in when the energy reaches thedissipation scale. We will
refer to this as cascade completion. Energy spectra and structure functions show power-
law forms like their counterparts in statistically steady turbulence. It turns out [46] that
the multiscaling exponents for both equal-time and time-dependent structure functions are
universal in so far as they are independent of whether they are measured in decaying tur-
bulence or the forced case in which we get statistically steady turbulence.

Furthermore, the distinction between Eulerian and Lagrangian frameworks assumes spe-
cial importance in the study of dynamic multiscaling of time-dependent structure functions.
Eulerian-velocity structure functions are dominated by the sweeping effect that lies at the
heart of Taylor's frozen-�ow hypothesis; this relates spatial and temporal separations lin-
early (see Sec. 2) whence we obtain trivial dynamic scaling with dynamic exponents
zE

p = 1 for all p, where the superscriptE stands for Eulerian. By contrast, we expect
nontrivial dynamic multiscaling in Lagrangian or quasi-Lagrangian measurements. Such
measurements are daunting in both experiments and direct numerical simulations; how-
ever, they are possible in shell models. As we have mentionedin Sec. 3, shell models
have a quasi-Lagrangian character since they do not have direct sweeping effects. Thus we
expect nontrivial dynamic multiscaling of time-dependentstructure functions in them.

Indeed, we �nd that [45,46,103] that, given a time-dependent structure function, we can
extract an in�nity of time scales from it. Dynamic scaling Ansätze [cf., Eq. (4)] can then
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be used to extract dynamic multiscaling exponents. A generalisation of the multifractal
model then suggests linear relations, referred to as bridgerelations, between these dynamic
multiscaling exponents and their equal-time counterparts. These can be related to equal-
time exponents via bridge relations. We show how to check these bridge relations in shell
models. However, before we present details, we must de�ne time-dependent structure
functions precisely.

The order-p, time-dependent, structure functions, for longitudinal velocity increments,
�u k (x; r ; t) � [u(x + r ; t) � u(x; t)] and passive-scalar increments,�� (x ; t; r ) = � (x +
r ; t) � � (x ; t) are de�ned as

F u
p (r; f t1; : : : ; tpg) �



[�u k (x; t1; r ) : : : �u k (x; tp; r )]

�
(56)

and

F �
p (r ; t1; :::; tp) = < [�� (x; t1; r ):::�� (x ; tp ; r )] > ; (57)

i.e., �uctuations are probed over a length scaler which lies in the inertial range. For
simplicity, we considert1 = t andt2 = : : : = tp = 0 in both Eq. (56) and Eq. (57).
Given F u (r; t ) andF � (r; t ), we can de�ne the order-p, degree-M , integral-time scales
and derivative-time scales as follows [46]:

T I;u
p;M (r; t ) �

�
1

Su
p (r )

Z 1

0
F u

p (r; t )t (M � 1) dt
� (1=M )

; (58)

T I;�
p;M (r; t ) �

�
1

S�
p (r )

Z 1

0
F �

p (r; t )t (M � 1) dt
� (1=M )

; (59)

T D;u
p;M (r; t ) �

�
1

Su
p (r )

@M F u
p (r; t )

@tM

� ( � 1=M )

; (60)

T D;�
p;M (r; t ) �

�
1

S�
p (r )

@M F �
p (r; t )

@tM

� ( � 1=M )

: (61)

Integral-time dynamic multiscaling exponentszI;u
p;M for �uid turbulence can be de�ned

via T I;u
p;M (r; t ) � r z I;u

p;M and the derivative-time oneszD;u
p;M by T D;u

p;M (r; t ) � r zD;u
p;M . They

satisfy the following bridge relations [46]:

zI;u
p;M = 1 + [ � p� M � � p]=M ; (62)

zD;u
p;M = 1 + [ � p � � p+ M ]=M: (63)

For passive-scalars advected by a turbulent velocity �eld,the corresponding dynamic mul-

tiscaling exponents are de�ned asT I;�
p;M (r; t ) / r z I;�

p;M andT D;�
p;M (r; t ) / r zD;�

p;M ; they satisfy
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the following bridge relations involving the scaling exponents� M of equal-time, order-M
structure functions of the advecting velocity �eld:

zI;�
p;M = 1 �

� M

M
; zD;�

p;M = 1 �
� � M

M
: (64)

These bridge relations, unlike Eq. (62) and Eq. (63), are independent ofp. [Recall that,
for the Kraichnan model, we have already shown in Sec. 5 that we get simple dynamic
scaling.]

GOY-model equal-time structure functions and their associated inertial-range exponents
are de�ned as follows:

Su
p (kn ) �

D
[un (t)u�

n (t)]p=2
E

� k � � p
n : (65)

The time-dependent structure function are

F u
p (kn ; t0; t) �

D
[un (t0)u�

n (t0 + t)]p=2
E

: (66)

We evaluate these numerically for the GOY shell model [numerical details may be found
in Refs. [45,46]], extract integral and derivative time scales from them and thence the
exponentszI;u

p;1 andzD;u
p;2 , respectively, from slopes of log-log plots ofT I;u

p;1 (n) versuskn

(right panel of Fig. 6) and ofT D;u
p;2 (n) versuskn (right panel of Fig. 7).
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Figure 6. (Color online) (a) A representative plot of the normalised fourth order
time-dependent structure function versus the dimensionless time� obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from top to bottom). (b) A log-log
plot of T I;u

4;1 (n) versusk (for convenience, we have dropped the subscriptn in the label
of the x-axis in the �gure); a linear �t gives the dynamic mulstiscaling exponentzI;u

4;1 .

There is excellent agreement (within error bars) of the multiscaling exponentszI;u
p;1 and

zD;u
p;2 , obtained from our simulations, with the values computed from the appropriate bridge

relations using the equal-time exponents,� p.
For the passive-scalar case, the equal-time order-p structure functions is

S�
p (kn ) �

D
[� (t)� �

n (t)]p=2
E

� k
� � �

p
n (67)
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Figure 7. (Color online) (a) A representative plot of the normalised sixth order
time-dependent structure function versus the dimensionless time� obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from top to bottom). (b) A
log-log plot ofT D;u

6;2 (n) versusk (for convenience, we have dropped the subscriptn in
the label of the x-axis in the �gure); a linear �t gives the dynamic multiscaling exponent
zD;u

6;2 .

and its time-dependent version is

F �
p (kn ; t0; t) = < [� n (t0)� �

n (t0 + t)]p=2 > : (68)

We consider decaying turbulence here witht0 a time origin. It is useful now to work

with the normalised time-dependent structure function,Q�
p(n; t 0; t) =

F �
p (kn ;t 0 ;t )

F �
p (kn ;t; 0) . For the

case of passive-scalars advected by a velocity �eld which isturbulent (a solution of the
GOY model), we calculate the integral (forM = 1) and derivative time scales (forM = 2)
corresponding to Eq.(58) and Eq.(60), respectively. The slope of a log-log plot ofT I;�

p;1 (n)

vskn yields the integral time scale exponent,zI;�
p;1 , sinceT I;�

p;1 (n) / k
� z I;�

p; 1
n . Likewise, from

plots of the derivative time scales we extract the exponentzD;�
p;2 . For a detailed discussion

on dynamic multiscaling in this model we refer the reader to Refs. [46,109].

6.3 2D Navier-Stokes Turbulence

We now consider illustrative numerical calculations for the 2D NS equations (9)-(11). We
begin with periodic boundary conditions for which we can usea pseudo-spectral method
similar to the one given in the previous Subsection for the 3DNS case. We study decay-
ing turbulence �rst with the source functionf (theẑ component of the curl of some force
r � F) set to 0. We use10242 collocation points and the standard2=3 dealiasing pro-
cedure; for time marching we use a second-order Runge-Kuttascheme [113]. Our initial
conditionj! (k)j2 = k � 3 exp(� k2) leads to a forward cascade. We seed the �ow with
Lagrangian tracers and use a cubic spline interpolation method to calculate their trajecto-
ries [122]. Representative plots from our from our DNS are shown in Fig. 8. The �rst
part (Fig. 8a) shows a compensated energy spectrumk3E(k) for the case with no Ekman
friction. Figure 8b, from a DNS with Ekman friction� E = 0 :1, Kolmogorov forcing [89],
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and periodic boundary conditions, shows a trajectory of a Lagrangian tracer superimposed
on a pseudocolour plot of the vorticity �eld at timet = 100; the tracer starts at the point
marked with a circle (t = 0 ) and ends at the star (t = 100). For a state-of-the-art simulation
that resolves both forward and inverse cascades in a forced DNS of 2D turbulence we refer
the reader to Ref. [123]; such DNS studies have also investigated the scaling properties
of structure functions and have provided some evidence for conformal invariance in the
inverse cascade inertial range [124].
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Figure 8. (Color online) (a) A log-log plot of the compensated energy spectrum
k3E (k) versusk from our DNS, of resolution10242 , of two dimensional decaying
turbulence with periodic boundary conditions. The �at region indicates a scaling form
E (k) � k � 3 . (b) The trajectory of a single Lagrangian particle over a time of order 100
in a two-dimensional �ow with drag and forcing. The startingpoint of the trajectory is
in the middle of the box and is indicated by a red circle; the end point is indicated by a
blue star. The trajectory is superimposed on a pseudocolor plot of the vorticity �eld cor-
responding to the time at the end of the Lagrangian trajectory. The �gure corresponds to
a forced DNS of resolution10242 with periodic boundary conditions, statistical steady
state, and with a coef�cient of Ekman friction� E = 0 :1.

We end with an illustrative example of a recent DNS study [89]that sheds light on
the effect of the Ekman friction on the statistics of the forward cascade in wall-bounded
�ows that are directly relevant to laboratory soap-�lm experiments [125–128]. The de-
tails of this DNS are given in Ref. [89]. In brief,! is driven to a statistical steady state
by a deterministic Kolmogorov forcingF! � kinj F0 cos(kinj x), with F0 the amplitude
andkinj the wavenumber on which the force acts; no-slip and no-penetration boundary
conditions are imposed on the walls. The important non-dimensional control parame-
ters are the Grashof numberG = 2 � jjF! jj2=(k3

inj �� 2) and the non-dimensional Ekman
friction 
 = � E =(k2

inj � ), where we non-dimensionalizeF! by 2�= (kinj jjF! jj2), with
jjF! jj2 � (

R
A jF! j2dx)1=2 and the length and time scales are made non-dimensional by

scalingx by k � 1
inj andt by k � 2

inj =� . We use a fourth-order Runge-Kutta scheme for time
marching and evaluate spatial derivatives via second-order and fourth-order, centered, �-
nite differences, respectively, for points adjacent to thewalls and for points inside the
domain. The Poisson equation is solved by using a fast-Poisson solver [113] and! is
calculated at the boundaries by using Thom's formula [89].

Since Kolmogorov forcing is inhomogeneous, we use the decomposition = h i +  0

and! = h! i + ! 0, where the angular brackets denote a time average and the prime the
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�uctuating part to calculate the order-p velocity and vorticity structure functions. Since
this is a wall-bounded �ow, it is important to extract the isotropic parts of these structure
functions [89,129]. Furthermore, given our resolution (20492), it becomes necessary to use
the ESS procedure to extract exponent ratios. Illustrativelog-log ESS plots for velocity,
Sp(R), and vorticity,S!

p (R), structure functions are shown in the left and right panels,
respectively, of Fig. 9; their slopes yield the exponent ratios that are plotted versus the order
p in Fig. 10. The Kraichnan-Leith-Batchelor (KLB) predictions [75] for these exponent
ratios, namely,� KLB

p =� KLB
2 � r p=2 and� !;KLB

p =� !;KLB
2 � r 0, agree with our values for

� p=�2 but not� !
p =� !

2 : velocity structure functions do not display multiscaling[left panel
of Fig. 10] whereas their vorticity analogs do [note the curvature of the plot in the right
panel of Fig. 10]. Similar results have been seen in DNS studies with periodic boundary
conditions [130,123]. Additional results for PDFs of several properties can be obtained
from our DNS [89]; these are in striking agreement with experimental results [126].
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Figure 9. (Color online) (Left) Log-log ESS plots of the isotropic parts of the order-p
velocity structure functionsSp (R) versusS2(R); p = 3 (purple line with dots),p = 4
(red line with square),p = 5 (green line with triangles), andp = 6 (blue line with
circles). According to the KLB predictionSp (R) � R �

p . (Right) Log-log ESS plots
of the isotropic parts of the order-p vorticity structure functionsSp (R) versusS2(R);
p = 3 (purple line with stars),p = 4 (red line with square),p = 5 (green line with
triangles), andp = 6 (blue line with circles).
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Figure 10. (Color online) (Left) Plots of the exponent ratios� p=� 2 versusp for the ve-
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2 versusp for the vorticity

differences.
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6.4 The One dimensional Burgers Equation

In this Subsection we present a few representative numerical studies of the 1D Burgers
equation. The �rst of these uses a pseudo-spectral method with 214 collocation points,
the2=3 dealising rule, and a fourth-order Runge-Kutta time-marching scheme. In the sec-
ond study of a stochastically forced Burgers equation (see below) we use a fast-Legendre
method that yields results in the zero-viscosity limit [131].

For the Burgers equation with no external forcing and suf�ciently well-behaved initial
conditions, the velocity �eld developsshocks, or jump discontinuities, which merge into
each other with time. The time at which the �rst shock appearsis usually denoted byt � .
For all times greater thant � , it is possible to calculate, analytically, the scaling exponents
� p for the equal-time structure functions viaSp � h [u(x+ r; t ) � u(x)]p i � Cp jr jp + C0

p jr j,
where the �rst term comes from theramp, and the second term comes from the probability
of having a shock in the intervaljr j. As a consequence of this we havebifractal scaling :
for 0 < p < 1 the �rst term dominates leading to� p = p and forp > 1 the second one
dominates giving� p = 1 . This leads to an energy spectrumE(k) � k � 2. Representative
plots from our pseudo-spectral DNS, with� = 10 � 3 and an initial conditionu(x) = sin(x)
(for which t � = 1 ) are shown in Fig. 11; the left panel shows plots of the velocity �eld at
timest = 0 ; 1; andt = 1 :5 and the right panel the energy spectrum att = 1 .
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Figure 11. (Color online) (Left) Snapshots of the solution of the Burgers equation
obtained from our DNS with initial conditionu(x) = sinx at timest = 0 (blue),t = 1
(black) andt = 2 (red). (Right) A representative log-log plot ofE (k) versusk, at time
t = 1 for the Burgers equation with initial conditionsu(x) = sinx.

The stochastically forced Burgers equation has played an important role in
renormalization-group studies [131]. In particular, consider a Gaussian random force
f (x; t ) with zero mean and the following covariance in Fourier space:

hf̂ (k1; t1)f̂ (k2; t2)i = 2 D0jkj � � (t1 � t2)� (k1 + k2); (69)

heref̂ (k; t ) is the spatial Fourier transform off (x; t ), D0 is a constant, and the scaling
properties of the forcing is governed by the exponent� . For positive values of� , the
Burgers equation can be studied by using renormalization-group techniques; speci�cally,
for � = 2 one recovers simple (Kardar-Parisi-Zhang or KPZ) scaling with the equal-time
exponent� p = p. It was hoped that forcing with negative values of� (in particular� =
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� 1), which cannot be studied by renormalization-group methods, might yield multiscaling
of velocity structure functions.

However, our high-resolution study [131], which uses a fast-Legendre method, has
shown that the apparent multiscaling of structure functions in this stochastic model might
arise because of numerical artifacts. The general consensus is that this stochastically forced
Burgers model should show bifractal scaling. In Fig. 12 we present representative plots
of the velocity �eld (left panel, blue curve) and the scalingexponents (right panel) for this
model. We have obtained the data for these �gures by using a fast-Legendre method with
218 collocation points.
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Figure 12. (Color online) (Left) A snapshot of the velocity �eld (jagged line in blue)
in steady state and the force in red from our fast-Legendre method DNS of the stochas-
tically forced Burgers equation. (Right) A representativeplot of the exponents� p , with
error-bars, for the equal-time velocity structure functions of the stochastically forced
Burgers equation; bifractal scaling is shown by the black solid line; the deviations from
this are believed to arise from artefacts (see text).

Numerical studies of the Burgers equation have also proved useful in elucidating bot-
tleneck structures in energy spectra [132,133](cf., the spectrum in the left panel of Fig.
5). It turns out that such a bottleneck does not occur in the conventional Burgers equation.
However, it does [134] occur in the hyperviscous one, in which usual Laplacian dissipa-
tion operator is replaced by its� th power; this is known as hyperviscosity for� > 1. We
show a representative compensated energy spectrum for the case� = 4 in the left panel of
Fig. 13. We have obtained this from a pseudo-spectral DNS with 212 collocation points.
The � ! 1 limit is very interesting too since, in this limit, the hyperviscous Burgers
equation maps on to the Galerkin-truncated version of the inviscid Burgers equation. In
this Galerkin-truncated inviscid case, the Fourier modes thermalise [135,136]; in a com-
pensated energy spectrum this shows up asE(k) � k2, for largek [see the right panel of
Fig. 13 for the case� = 200]. Such thermalisation effects in the Galerkin-truncated Euler
equation have also attracted a lot of attention [137]; and the link between bottlenecks and
thermalisation has been explored in our recent work [134] towhich we refer the interested
reader.
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Figure 13. (Color online) (Left) A representative log-log plot of a bottleneck in the
compensated energy spectrumk2E (k) of a hyperviscous Burgers equation with� = 4 .
(Right) A representative log-log plot ofk2E (k) versusk for � = 200 at timet = 30 .
We see clear signatures of thermalization at largek (see text).

6.5 Turbulence with Polymer Additives

In this Subsection, we present a few results from our numerical study [138] of the analogue
drag reduction by polymer additives in homogeneous, isotropic turbulence. This requires
a DNS of considerably greater complexity than the ones we have described above. A
na�̈ve pseudospectral method cannot be used for the FENE-P model given in Eqs. (18)
and (19): the polymer conformation tensorC is symmetric and positive de�nite; however,
in a practical implementation of the pseudo-spectral method it loses this property. We
have employed a numerical technique that uses a Cholesky decomposition to overcome
this problem; we refer the reader to Ref. [138] for these details.

Our recent DNS of this model has shown that the natural analogue drag reduction in
decaying, homogeneous, isotropic turbulence is dissipation reduction; the percentage re-
duction DR can be de�ned as

DR �
�

� f;m � � p;m

� f;m

�
� 100; (70)

here the superscriptsf andp stand, respectively, for the �uid without and with polymers
and the superscriptm indicates the timetm at which the cascade is completed. The de-
pendence of DR on the polymer concentration parameterc and the Weissenberg number
may be found in Ref. [138]. Here we show how the addition of polymers reduces small-
scale structures in the turbulent �ow: By a comparison of theisosurfaces ofj! j in the
left (without polymers) and right (with polymers) panels ofFig. 14, we see that slender
vorticity �laments are suppressed by the polymers; this is in qualitative agreement with ex-
periments [93]. The PDFs ofj! j, with and without polymers (left panel of Fig. 15) con�rm
that regions of large vorticity are reduced by polymers. Theright panel of Fig. 15 shows
how the polymers modify the energy spectrum in the dissipation range; this behaviour has
been seen in recent experiments [96], which study the second-order structure function that
is related simply to the energy spectrum. For a full discussion of these and related results
we refer the reader to Ref. [101,138].
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,
Figure 14. (Color online) Constant-j! j isosurfaces forj! j = hj! ji + � at cascade
completion without and (Right) with polymers (c = 0 :4); hj! ji is the mean and� the
standard deviation ofj! j.
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Figure 15. (Color online) (Left) PDF of! at cascade completion without (c = 0 )
and with polymers (c = 0 :4). Note that regions of large vorticity are reduced on the
addition of polymers. (Right) Representative plots of the energy spectraE p;m (k) or
E f;m (k) versusk for c = 0 :1 (blue dashed line) andc = 0 :4 (solid line).
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7. Conclusions

Turbulence provides us with a variety of challenging problems. We have tried to give
an overview of some of these, especially those that deal withthe statistical properties of
turbulence. The choice of topics has been in�uenced, of course, by the areas in which
we have carried out research. For complementary, recent overviews we refer the reader to
Refs. [1–3]; we hope the other reviews and books that we have cited to will provide the
reader with further details.

We would like to thank CSIR, DST, and UGC (India) for support,and SERC (IISc) for
computational resources.
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Mech.,589, 57 (2007);ibid, 83 (2007);ibid 103 (2007).
[64] A. Talamelli, F. Persiani, J.H.M. Fransson, P.H. Alfredsson, A.V. Johansson, H.M. Nagib, J-D
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