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1. Introduction

Turbulence is often described as the last great unsolvddeyroof classical physics [1-3].
However, it is not easy to state what would constitute a &miubf the turbulence prob-
lem. This is principally because turbulence is noe problenbut a collection okeveral
important problems: These include the characterisatiahamtrol of turbulent flows,
both subsonic and supersonic, of interest to engineersasiflows in pipes or over cars
and aeroplanes [4,5]. Mathematical questions in this area@ncerned with develop-
ing proofs of the smoothness, or lack thereof, of solutiohthe Navier-Stokes and re-
lated equations [6—10]. Turbulence also provides a vaétghallenges for fluid dy-
namicists [5,11-13], astrophysicists [14—-17], geophgs¢18,19], climate scientists [20],
plasma physicists [15-17,21,22], and statistical phgsdR23—32]. In this brief overview,
written primarily for physicists who are not experts in tuldnce, we concentrate on some
recent advances in the statistical characterisation af flubulence [33] in three dimen-
sions, the turbulence of passive scalars such as polluiaditstwo-dimensional turbu-
lence in thin films or soap films [35,36], turbulence in the gg&ns equation [37-39], and
fluid turbulence with polymer additives [40—42]; in most bigt paper we restrict our-
selves tohomogeneous, isotropic turbulendd3,43,44]; and we highlight some similar-
ities between the statistical properties of systems att&calripoint and those of turbu-
lent fluids [31,45,46]. Several important problems that wendt attempt to cover include
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Rayleigh-Bénard turbulence [47], superfluid turbulerg;é8], magnetohydrodyanmic tur-
bulence [15,17,21,22], the behaviour of inertial parsdteturbulent flows [49], the transi-
tion to turbulence in different experimental situation8,[l], and boundary-layer [52,53]
and wall-bounded [54] turbulence.

This paper is organised as follows: Section 2 gives an ogereif some of the experi-
ments of relevance to our discussion here. In Section 3 wednte the equations that we
consider. Section 4 is devoted to a summary of phenomerwabapproaches that have
been developed, since the pioneering studies of Richaf@&yand Kolmogorov [56], in
1941 (K41), to understand the behaviour of velocity and ogeicture functions irin-
ertial ranges Section 5 introduces the ideas of multiscaling that hawnlzkeveloped to
understand deviations from the predictions of K41-typenumeenology. Section 6 con-
tains illustrative direct numerical simulations; it costsi of five subsections devoted to
(a) three-dimensional fluid turbulence, (b) shell modealstyo-dimensional turbulence in
soap films, (d) turbulence in the one-dimensional Burgeusiggn, and (e) fluid turbulence
with polymer additives. Section 7 contains concluding rekaa

2. Experimental Overview

Turbulent flows abound in nature. They include the flow of waiea garden pipe or in
rapids, the flow of air over moving cars or aeroplanes, jeas dne formed when a fluid is
forced through an orifice, the turbulent advection of paliis such as ash from a volcanic
eruption, terrestrial and Jovian storms, turbulent cotiwadn the sun, and turbulent shear
flows in the arms of spiral galaxies. A wide variety of expegirtal studies have been
carried out to understand the properties of such turbulenssfl we concentrate on those
that are designed to elucidate the statistical properfiegbulence, especially turbulence
that is, at small spatial scales and far away from boundadr@sogeneous and isotropic
Most of our discussion will be devoted to incompressible fipwe., low-Mach-number
cases in which the fluid velocity is much less than the vejaafitsound in the fluid.

In laboratories such turbulence is generated in many éiffeways. A common method
uses a grid in a wind tunnel [57]; the flow downstream from ttid is homogeneous and
isotropic, to a good approximation. Another technique tigsevon Karman swirling flow,
i.e., flow generated in a fluid contained in a cylindrical tavith two coaxial, counterrotat-
ing discs at its ends [58-60]; in the middle of the tank, faagivom the discs, the turbulent
flow is approximately homogeneous and isotropic. Electigmetically forced thin films
and soap films [1,35,36] have yielded very useful resultsf@-dimensional turbulence.
Turbulence data can also be obtained from atmospheric laoytelyers [61-64], oceanic
flows [65], and astrophysical measurements [14]; experiat@onditions cannot be con-
trolled as carefully in such natural settings as they camtzelaboratory, but a far greater
range of length scales can be probed than is possible indtdrgrexperiments.

Traditionally, experiments have measured the velogity, t) at a single poink at var-
ious timest by using hot-wire anemometers; these anemometers can ingtegibns in
(a) the number of components of the velocity that can be nmedsand (b) the spatial and
temporal resolutions that can be obtained [66,67]. Suctsareaents yield a time series
for the velocity; if the mean flow velocity >> ..., the root-mean-square fluctuations
of the velocity, then Taylor’s frozen-flow hypothesis [5]8an be used to relate temporal
separationgt to spatial separations-, along the mean flow direction viar = Udt. The
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Reynolds numbeRe = UL /v, whereU and L are typical velocity and length scales in
the flow andv is the kinematic viscosity, is a convenient dimensionlesdrol parameter;
at low Re flows are laminar; as it increases increases there is aticantd turbulence
often via a variety of instabilities [50] that we will not cewhere; and at larg&e fully
developed turbulence sets in. To compare different flows d@fien useful to employ the
Taylor-microscale Reynolds numbRBe) = u,,,s\/v, where the Taylor microscabecan
be obtained from the energy spectrum as described below §S¥c

Refinements in hot-wire anemometry [63,68] and flow visadilis techniques such as
laser-doppler velocimetry (LDV) [66], particle-image welmetry (PIV) [66,67], particle-
tracking velocimetry (PTV) [66,67], tomographic PIV [69jplographic PIV [70], and
digital holographic microscopy [71] have made it possiblebtain reliable measurements
of the Eulerian velocityu(x, t) (see Sec. 3) in a turbulent flow. In the simplest forms of
anemometry a time series of the velocity is obtained at angient in space; in PIV two
components of the velocity field can be obtained in a sheetgatem time; holographic
PIV can yield all components of the velocity field in a volun@amponents of the velocity
derivative tensord;; = J;u,; can also be obtained [63] and thence quantities such as the
energy dissipation rate per unit mass per unit volume —v Zm(aiuj + dju;)?, the
vorticity w = V x u, and components of the rate of strain tensgr= (9;u; + 9;u;)/2,
where the subscriptsand; are Cartesian indices. A discussion of the subtleties amd li
itations of these measurement techniques lies beyond tipe sf our overview; we refer
the reader to Refs. [63,66,67] for details. Significant pesg has also been made over the
past decade in the measurement of Lagrangian trajectsees3ec. 3) of tracer particles
in turbulent flows [58,59]. Given such measurements, erpamtalists can obtain several
properties of turbulent flows. We give illustrative exanmgptd the types of properties we
consider.

Flow-visualisation methods often display large-scaleereht structures in turbulent
flows. Examples of such structures plumes in Rayleigh-8@tmtonvection [72], struc-
tures behind a splitter plate [73], and large vortical dttes in two-dimensional or strat-
ified flows [1,35,36]. In three-dimensional flows, as we wéksn greater detail below,
energy that is pumped into the flow at the injection sdaleascades, as first suggested
by Richardson [55], from large-scale eddies to small-soales till it is eventually dis-
sipated around and beyond the dissipation sgaleBy contrast, two-dimensional turbu-
lence [35,36,74,75] displays a dual cascade: there is @nsexascade of energy from the
scale at which it is pumped into the system to large lengtlesand a direct cascade of
enstrophy() = <%w2> to small length scales. The inverse cascade of energy isiasst
with the formation of a few large vortices; in practical lisations the sizes of such vor-
tices are controlled finally by Ekman friction that is indd¢e.g., by air drag in soap-film
turbulence.

Measurements of the vorticity in highly turbulent flows show that regions of large
are organised into slender tubes. The first experimentdeeace for this was obtained by
seeding the flow with bubbles that moved preferentially pors of low pressure [76] that
are associated with large+egimes. For recent experiments on vortex tubes we refer the
reader to Ref. [77].

The time series of the fluid velocity at a given posatshows strong fluctuations. It
is natural, therefore, to inquire into the statistical mujes of turbulent flows. From the
Eulerian velocityu(x, t) and its derivatives we can obtain one-point statisticshas
probability distribution functions (PDFs) of the velocand its derivatives. Velocity PDFs
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are found to be close to Gaussian distributions. HoweveEsR#w? and velocity deriva-
tives show significant non-Gaussian tails; for a recentystwtiich contains references to
earlier work, see Ref. [63]. The PDF efis non-Gaussian too and the time series of
is highly intermittent [78]; furthermore, in the limike — oo, i.e.,v — 0, the energy
dissipation rate per unit volumeapproaches a positive constant value (see, e.g., Fig. 2 of
Ref. [79]), a result referred to agdissipative anomalgr thezeroth law of turbulence

Various statistical properties of the rate-of-strain tenwith components;;, have been
measured [63]. The eigenvalugg Ao, andAz, with A\; > Xy > A3, of this tensor must
satisfyA; + A2 + A3 = 0, with A; > 0 and)\; < 0, in an incompressible flow. The sign of
Ao cannot be determined by this condition but its PDF shows ih&trbulent flows \; has
a small, positive mean value [80]; and the PDFs®@{w - ¢;), wheree; is the normalised
eigenvector corresponding #q, show that there is a preferential alignment [63}.0énd
es. Joint PDFs can be measured too with good accuracy. An exashptcent interestis a
tear-drop feature observed in contour plots of the joint BRFespectively, the second and
third invariants @ = —tr(A4%)/2 andR = —tr(A?%)/3 of the velocity gradient tensot; ;
(see Fig. 11 of Ref. [63]); we display such a plot in Sec. 6 tteatls with direct numerical
simulations.

Two-point statistics are characterised conventionallgtoglying the equal-time, order-
p, longitudinal velocity structure function

Sp(r) = ([(u(x +1) = u(x)) - (x/r]"), 1)

where the angular brackets indicate a time average over dhequilibrium statisti-
cal steady state that we obtain in forced turbulence (degattrbulence is discussed
in Sec. 6.2). Experiments [33,81] show that, for separatiomn the inertial range
Na << r << L,

Sp(r) ~ 77, (@)

with exponents,, that deviate significantly from the simple scaling predioti56] Cf‘“ =
p/3, especially forp > 3, where(, < (541. This prediction, made by Kolmogorov in
1941 (hence the abbreviation K41), is discussed in Sec.aWhéhe deviations from this
simple scaling prediction are referred to as multiscali@gq, 5) and they are associated
with the intermittency ot mentioned above. We mention, in passing, that the log-Boiss
model due to She and Leveque provides a good parametrigdtibe plot of(, versusp
[82].

The second-order structure functidn(r) can be related easily by Fourier transforma-
tion to the the energy spectrub(k) = 4rk?(|a(k)|?), where the tilde denotes the Fourier
transform,k = |k|, k is the wave vector, we assume that the turbulence is homogsne
and isotropic, and, for specificity, we give the formula fbe tthree-dimensional case.
Since¢f4! = 2/3, the K41 prediction is

EF (k) ~ k5, (3)

a result that is in good agreement with a wide range of exparim [see, e.g.,
Refs. [33,83]].

The structure functionS,, () are the moments of the PDFs of the longitudinal velocity
incrementshu)| = [(u(x +r) —u(x)) - (r/r)]. [In the argument of, we user instead of
r when we consider homogeneous, isotropic turbulence.]&’R&4-s have been measured
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directly [84] and they show non-Gaussian tails;radecreases, the deviations of these
PDFs from Gaussian distributions increases.

We now present a few examples of recent Lagrangian measutgifa8,59] that have
been designed to track tracer particles in, e.g., the vonméa flow at large Reynolds
numbers. By employing state-of-the-art measurement tgabs, such as silicon strip de-
tectors [59], used in high-energy-physics experimentscoustic-doppler methods [58],
these experiments have been able to attain high spatidiitiesoand high sampling rates
and have, therefore, been enable to obtain good data foteaatien statistics of La-
grangian particles and the analogues of velocity strudturetions for them.

These experiments [59] find, fGD0 < Rex < 970, consistency with the Heisenberg-
Yaglom scaling form of the acceleration variance, i.e.,

(aiaj> ~ 6(3/2)1/(_1/2)61']', (4)

whereq; is the Cartesian componehnbf the acceleration. Furthermore, there are indica-
tions of strong intermittency effects in the acceleratibparticles and anisotropy effects
are present even at very large .
Orderp Lagrangian velocity structure functions are defined alohggrangian trajec-

tory as

Sip(r) = (i (t+7) — o (D)), (5)
where the superscrigt denotes Lagrangian and the subsciifite Cartesian component.
If the time lagT lies in the temporal analogue of the inertial range, rg. & 7 < Ty,
wherer, is the viscous dissipation time scale &figdis the time associated with the scale
L at which energy is injected into the system, then it is exgethat

Sfp(T) ~ TS, (6)
The analogue of the dimensional K41 predictiog;is”*" = p/2; experiments and simu-
lations [60] indicate that there are corrections to thisgeimensional prediction.

The best laboratory realisations of two-dimensional tlebce are (a) a thin layer of a
conducting fluid excited by magnetic fields, varying both jrase and time and applied
perpendicular to the layer [85], and (b) soap films [86] in e¥hiurbulence can be gener-
ated either by electromagnetic forcing or by the introduciof a comb, which plays the
role of a grid, in a rapidly flowing soap film. In the range of aaeters used in typical
experimental studies [1,35,36,87] both these systems eatescribed quite well [88,89]
by the 2D Navier Stokes equation (see Sec. 3) with an additiBkman-friction term,
induced typically by air drag; however, in some cases we migstaccount for corrections
arising from fluctuations of the film thickness, compredgipeffects, and the Marangoni
effect. Measurement techniques are similar to those eregdltay study three-dimensional
turbulence [1,35,36]. Two-dimensional analogues of th&®&escribed above for 3D tur-
bulence have been measured [see, e.g., Refs. [87]]; weawitht on these briefly when
we discuss numerical simulations of 2D turbulence in Se8. &/locity and vorticity
structure functions can be measured as in 3D turbulencegVewinertial ranges associ-
ated with inverse and forward cascades must be distingdiighe former shows simple
scaling with an energy spectruB(k) ~ k~5/3 whereas the latter has an energy spectrum
E(k) ~ k=G+9) with § = 0 if there is no Ekman friction and > 0 otherwise. In the
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forward cascade velocity structure functions show simpddiisg [87]; we are not aware
of experimental measurements of vorticity structure fiomg (we will discuss these in the
context of numerical simulations in Sec. 6.3).

We end this Section with a brief discussion of one examplaudiulence in a non-
Newtonian setting, namely, fluid flow in the presence of payradditives. There are
two dimensionless control parameters in this cdgeand the Weissenberg numbéfe,
which is a ratio of the polymer-relaxation time and a typishéaring time in the flow
(some studies [41] use a similar dimensionless paramdtedd¢he Deborah numbébe).
Dramatically different behaviours arise depending on #lees of these parameters.

In the absence of polymers the flow is laminar at I&«; however, the addition of
small amounts of high-molecular-weight polymers can ireelastic turbulencg90], i.e.,

a mixing flow that is like turbulence and in which the drag #ases with increasing c.
We will not discuss elastic turbulence in detail here; werdfie reader to Ref. [90] for an
overview of experiments and to Ref. [91] for representatirmerical simulations.

If, instead, the flow is turbulent in the absence of polymees, we consider largée
flows, then the addition of polymers leads to the dramatiapheenon ofdrag reduction
that has been known since 1949 [92]; it has obvious and irapbimdustrial applications
[40,41,93-95]. Normally drag reduction is discussed in a¢batext of pipe or channel
flows: on the addition of polymers to turbulent flow in a piplee tpressure difference
required to maintain a given volumetric flow ratecreasesi.e., the drag is reduced and
a percentage drag reduction can be obtained from the pageergduction in the pressure
difference. For a recent discussion of drag reduction ie pipchannel flows we refer the
reader to Ref. [41]. Here we concentrate on other phenonhehate associated with the
addition of polymers to turbulent flows that are homogenemakisotropic. In particular,
experiments [93] show that the polymers lead to a suppnessiemall-scale structures
and important modifications in the second-order structunetion [96]. We will return to
an examination of such phenomena when we discuss directrimaigmulations in Sec.
6.5.

3. Models

Before we discuss advances in the statistical charactienizaf turbulence, we provide a
brief description to the models we consider. We start withliasic equations of hydrody-
namics, in three and two dimensions, that are central taefud turbulence. We also give
introductory overviews of the Burgers equation in one disien, the advection-diffusion
equation for passive scalars, and the coupled NS and firete¢gnsible nonlinear elastic
Peterlin (FENE-P) equations for polymers in a fluid. We ensl$ection with a description
of shell models that are often used as highly simplified mottelhomogeneous, isotropic
turbulence.
At low Mach numbers, fluid flows are governed by the Naviek88(NS) Eq. (7)

augmented by the incompressibility condition

du+ (u.V)u=—-Vp+vViu+f,
V-u=0, (7)

where we use units in which the density 1, the Eulerian velocity at poimtand timet is
u(r, t), the external body force per unit volumefisandv is the kinematic viscosity. The
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pressure can be eliminated by using the incompressibility condif®33,43] and it can
then be obtained from the Poisson equalittp = —0;;(usu ). Inthe unforced, inviscid
case, the momentum, the kinetic energy, and the heli€ity [ drw - u/2 are conserved,
herew = V x u s the vorticity. The Reynolds numb&e = LV/v, whereL andV are
characteristic length and velocity scales, is a convenignénsionless control parameter:
The flow is laminar at lowRe and irregular, and eventually turbulent,/as is increased.

In the vorticity formulation the NS equation 7 becomes

Ow=Vxuxw+rvVw+V xf; (8)

the pressure is eliminated naturally here. This formutatfoparticularly useful is two
dimensions since is a pseudo-scalar in this case. Specifically, in two dimersithe NS
equation can be written in terms ofand the stream function:

Ow — J(h,w) = V3w + apw + f;
V) = w;
J(¥,w) = (0:4)(Oyw) — (Oow) (Oy ). )

Hereag is the coefficient of the air-drag-induced Ekman-frictiermh. The incompress-
ibility constraint

Ozt + Oyuy =0 (10)
ensures that the velocity is uniquely determined/byia

u = (=0, 0,0). (11)

In the inviscid, unforced case we have more conserved diemith two dimensions than
in three; the additional conserved quantities @e™), for all powersn, the first of which
is the mean enstroph§ = (1w?).

In one dimension (1D) the incompressibility constraintdie#o trivial velocity fields.
It is fruitful, however, to consider the Burgers equatiof@][3which is the NS equation
without pressure and the incompressibility constrainis Has been studied in great detail
as it often provides interesting insights into fluid turtmde. In 1D the Burgers equation is

Ov + vd,v = V%0 + f, (12)

where f is the external force and the velocitycan have shocks since the system is
compressible. In the unforced, inviscid case the Burgeta#an has infinitely many
conserved quantities, namely,v"dz for all integersn. In the limit v — 0 we can
use the Cole-Hopf transformation,= 0,V, f = —3J,F, and¥ = 2r1n ©, to obtain
0,0 = vd20 + FO/(2v), a linear partial differential equation (PDE) that can bed
explicitly in the absence of any boundary [38,39].

Passive scalars such as pollutants can be advected by fltidse flows are governed
by the advection-diffusion equation

040 + 1.Vl = kV20 + £y, (13)
wheref is the passive-scalar field, the advecting velocity fiettisfies the NS equation 7,

andfy is an external force. The fiel#lis passivebecause it does not act on or modify
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Note that Eq.( 13) is linear ifl. It is possible, therefore, to make considerable analyti-
cal progress in understanding the statistical properfipassive-scalar turbulence for the
simplified model of passive-scalar advection due to Kragéch34,97]; in this model each
component offy is a zero-mean Gaussian random variable that is white in; tiorther-
more, each component of is taken to be a zero-mean Gaussian random variable that is
white in time and which has the covariance

(ui(x, t)uj (X +r, tl)> = 2Dij5(t — tl); (14)

the Fourier transform ab;; has the form

. 1 ._ i
Dij(q) o (¢* + ﬁ) (2 i [0i5 — qng; (15)

g is the wave vector[ is the characteristic large length scaleis the dissipation scale,
and¢ is a parameter. In the limit of — oo andn — 0 we have, in real space,

Dij(r) = D5 — %dz‘j (r) (16)

with

dij = Dir [(d = 1+ )3;; — €52]. (17)
Dy is a normalization constant adh parameter; fob < £ < 2 equal-time passive-scalar
structure functions show multiscaling [34].

We turn now to an example of a model for non-Newtonian flowds fimdel combines
the NS equation for a fluid with the finitely extensible noebm elastic Peterlin (FENE-P)
model for polymers; it is usenhter alia to study the effects of polymer additives on fluid
turbulence. This model is defined by the following equations

dpu + (W.V)u = vV2u + V. [f(rp)C] — Vp; (18)

P
7
oC +u.VC =C.(Vu) + (Vu)'.c — %'
P

(19)
Here v is the kinematic viscosity of the fluid, the viscosity parameter for the solute
(FENE-P),7p the polymer relaxation time; the solvent density, the pressure,Vu)?

the transpose dfVu), C.3 = (R, Rs) the elements of the polymer-conformation tensor
C (angular brackets indicate an average over polymer cofiguns),Z the identity ten-
sor with element$,.s, f(rp) = (L* — 3)/(L* — r%) the FENE-P potential that ensures
finite extensibility,rp = /Tr(C) andL the length and the maximum possible extension,
respectively, of the polymers, ard= /(v + 1) a dimensionless measure of the polymer
concentration [98].

The hydrodynamical partial differential equations (PD#iscussed above are difficult
to solve, even on computers via direct numerical simulafioNS), if we want to resolve
the large ranges of spatial and temporal scales that becgmant in turbulent flows. It
is useful, therefore, to consider simplified models of tlghae that are numerically more
tractable than these PDEShell modelare important examples of such simplified models;
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they have proved to be useful testing grounds for the maliisg properties of structure
functions in turbulence. We will consider, as illustrateeamples, the Gledzer-Ohkitani-
Yamada (GOY) shell model [99] for fluid turbulence in threménsions and a shell model
for the advection-diffusion equation [100].

Shell models cannot be derived from the NS equation in antesatic way. They
are formulated in a discretised Fourier space with logaritally spaced wave vectors
kn = koA™, A > 1, associated with shelis and dynamical variables that are the complex,
scalar velocities:,,. Note thatk,, is chosen to be a scalar: spherical symmetry is implicit
in GOY-type shell models since their aim is to study homogeiseisotropic turbulence.
Giventhatk,, andu,, are scalars, shell models cannot describe vortical strestar enforce
the incompressibility constraint.

The temporal evolution of such a shell model is governed bgt afsordinary differen-
tial equations that have the following features in commoththie Fourier-space version
of the NS equation [12]: they have a viscous-dissipatiomtef the form—vk2u,,, they
conserve the shell-model analogues of the energy and ey el the absence of viscos-
ity and forcing, and they have nonlinear terms of the fekfyu,, v, that couple velocities
in different shells. In the NS equation all Fourier modeshaf velocity affect each other
directly but in most shell models nonlinear terms limit dirnteractions to shell velocities
in nearest- and next-nearest-neighbour shells; thustdivezeping effects.e., the advec-
tion of the largest eddies by the the smallest eddies, ageptén the NS equation but not
in most shell models. This is why the latter are occasionaéiywed as a highly simplified,
guasi-Lagrangian representation (see below) of the NStiequa

The GOY-model evolution equations have the form

[% + Vki]un = i(anun+1un+2bnun—lun+l + Cnun—lun—Q)* + fna (20)
where complex conjugation is denoted Hythe coefficients are chosen to bg = k,,
b, = —0kn_1, ¢, = —(1 — 0)k,—2 to conserve the shell-model analogues of the energy
and the helicity in the inviscid, unforced case; in any geadtcalculationl < n < N,
whereN is the total number of shells and we use the boundary comditip = 0V n < 1
orVn > N; as mentioned abovk, = A"k, and many groups usk = 2, § = 1/2,
ko = 1/16, andN = 22. The logarithmic discretisation here allows us to reacly égh
Reynolds number, in numerical simulations of this modetewith such a moderate value
of N. For studies of decaying turbulence we ggt= 0,V n; in the case of statistically
steady, forced turbulence [45] it is convenient to yise= (1 + )5 x 103, For such a
shell model the analogue of a velocity structure functiofjgk,) = (Ju(k,)|P) and the
energy spectrum i€ (k, ) = |u(k,)|?/kn.

It is possible to construct other shell models, by using argpis similar to the ones we
have just discussed, for other PDEs such as the advectifusidn equation. Its shell-
model version is

d .
[E + HICZ]@ = Z[kn(enJrlunfl - enflunJrl) -
kn_
2 ! (enflun72 + 9n72un71) -
knfl *
2 (9n+2un+1 + 9n+1un+2)] (21)
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For this model, the advecting velocity field can either beaoted from the numerical
solution of a fluid shell model, like the GOY model above, orusing a shell-model ver-
sion of the type of stochastic velocity field introduced ia raichnan model for passive-
scalar advection [46]. A shell-model analogue for the FENEodel of fluid turbulence
with polymer additives may be found in Ref. [101].

3.1 Eulerian, Lagrangian, Quasi-Lagrangian frameworks

The Navier-Stokes Eq.( 7) is written in terms of the Euleriafocity u at positionx and
timet; i.e., in the Eulerian case we use a frame of reference tffiaeisd with respect to the
fluid; this frame can be used for any flow property or field. Tlagtangian framework [5]
uses a complementary point of view in which we fix a frame ofrefice to a fluigharticle;
this fictitious particle moves with the flow and its path is moas a Lagrangian trajectory.
Each Lagrangian particle is characterised by its positesiarrg at timet; its trajectory
at some later timeis R = R(¢; rg, tg) and the associated Lagrangian velocity is

ve <%) (22)

We will also employ the quasi-Lagrangian [102,103] framegwihat uses the following
transformation for an Eulerian field(r, ¢):

Y(r,t) = ¢[r + R(t; ro, O)v t]; (23)

herey) is the quasi-Lagrangian field ami(¢; ro, 0) is the position at time of a Lagrangian
particle that was at poinf, at timet = 0.

As we have mentioned above, sweeping effects are presentwdnase Eulerian veloc-
ities. However, since Lagrangian particles move with the,fiuch effects are not present
in Lagrangian and quasi-Lagrangian frameworks. In expenisineutrally buoyant tracer
particles are used to obtain Lagrangian trajectories thathe used to obtain statistical
properties of Lagrangian particles.

4. Homogeneous | sotropic Turbulence: Phenomenology

In 1941 Kolmogorov [56] developed his classic phenomeriockd@pproach to turbulence
that is often referred to as K41. He used the idea of the Ritswar cascade to provide an
intuitive, though not rigorous, understanding of the poleer behaviours we have men-
tioned in Sec. 2. We give a brief introduction to K41 phenooiegy and related ideas;
for a detailed discussion the reader should consult Ref. [33

First we must recognise that there are two important lenzgles: (a) The largategral
length scaleL that is comparable to the system size and at which energgtiojetakes
place; flow at this scale depends on the details of the systenth& way in which energy
is injected into it; (b) and the smalissipation length scalg,; below which energy dissi-
pation becomes significant. The inertial range of scaleghith structure functions and
energy spectra assume the power-law behaviours mentidove §Sec. 2), lie in between
L andn; asRe increases so does the extent of the inertial range.
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In K41 Kolmogorov made the following assumptions: (a) Fudigveloped 3D turbu-
lence is homogeneous and isotropic at small length scatkfaamway from boundaries.
(b) In the statistical steady state, the energy dissipatts per unit volume remains fi-
nite and positive even wheRe — oo (the dissipative anomaly mentioned above). (c) A
Richardson-type cascade is set up in which energy is trapsfby the breakdown of the
largest eddies, created by inherent instabilities of the,fto smaller ones, which decay
in turn into even smaller eddies, and so on till the sizes efatidies become comparable
to g where their energy can then be degraded by viscous digsmipafis Re — oo all
inertial-range statistical properties are uniquely antensally determined by the scate
ande and are independent &f, v andn,.

Dimensional analysis then yields the scaling form of thesogdstructure function

SKAL(r) m CeP/3rP/3, (24)

sincee has dimensions dflength)?(time)~3. [It is implicit here that the eddies, at any
given level of the Richardson cascade, are space fillingotif ais intermittent and scale
dependent as we discuss in Sec. 5 on multiscaling.] Kﬁﬁ’é = p/3; forp = 2

we getSE4(r) ~ r2/3 whose Fourier transform is related to the K41 energy spectru
E(k)K4T ~ E~5/3 (left panel of Fig. 1).

The prediction(f*! = 1, unlike all others K41 results, can be derived exactly fer th
NS equation in the limifRe — oo. In particular, it can be shown that [33,44]

S5(6) ~ _%ee, (25)

an important result, since it is both exact and nontrivial.
It is often useful to discuss K41 phenomenology by introdgei, the velocity associ-
ated with the inertial-range length scdleclearly

v ~ /3013, (26)

The time scalg, ~ Ui; the typical time required for the transfer of energy frorales of
order/ to smaller ones. This yields the rate of energy transfer

) -

I ~
ty Y4

Given the assumptions of K41, there is neither direct engjggtion nor molecular dissi-
pation in the inertial range. Therefore, the energy flukecomes independent 6fnd is
equal to the mean energy dissipation raterhich can now be written as

€~ vg’/ﬁ. (28)

A similar prediction, for the two-point correlations of agséve-scalar advected by a
turbulent fluid is due to Obukhov and Corsin; we shall not déscit here but refer the
reader to Ref. [104,105].

As we have mentioned above, the cascade of energy in 3D @mtellis replaced in
2D turbulence by a dual cascade: an inverse cascade of efiemythe injection scale
to larger length scales and a forward cascade of enstrofih8G3¥4,75]. In the inverse
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Figure 1. (Color online) (a) A répresentative log-log plot of the emespectrum
E(k) versusk, from a numerical simulation of the GOY shell model with 22k
The straight black line is a guide to the eye indicating K4dlisg k /. (b) A plot of
the equal-time scaling exponers versusp, with error bars, obtained from the GOY
shell model. The straight black line (color online) indesK41 scaling /3.

cascade the energy accumulation at large length scalestiotted eventually by Ekman
friction. The analogue of K41 phenomenology for this cadeaised upon physical argu-
ments due to Kraichnan, Leith and Batchelor [75]. Given thate is energy injection
at some intermediate length scale, kinetic energy gettréuised from such intermediate
scales to the largest length scale. The scaling result éotvib cascades gives us a kinetic
energy spectrum that hag:a®/3 form in the inverse-cascade inertial range aid &form

(in the absence of Ekman friction) in the forward-cascaeéetial range.

5. From scaling to multiscaling

In equilibrium statistical mechanics, equal-time and tidependent correlation functions,
in the vicinity of a critical point, display scaling propes that are well understood. For
example, for a spin system ihdimensions close to its critical point, the scaling forms of
the equal-time correlation functigrir; ¢, h) and its Fourier transform(k; ¢, i), for a pair

of spins separated by a distangere as follows:

_ Grt™ b/t
g(r;t,h) ~ %? (29)

Gkt h/TD)

g(k;t,h) ~ o

(30)

Here the reduced temperature= (T — T.)/T., whereT andT, are, respectively, the
temperature and the critical temperature, and the reduektl/fi= H/kgpT,, with H
the external field andp the Boltzmann constant. The equal-time critical expongnts
and A are universal for a given universality class (the uncorieeal overbars are used
to distinguish these exponents from the kinematic visgpsit.). The scaling functions
G and G can be made universal too if two scale factors are taken iotount [106].
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Precisely at the critical poifft = 0, h = 0) these scaling forms lead to power-law decays
of correlation functions; and, as the critical point is aggrhed, the correlation length
diverges [e.g., a§ ~ tC~7) if h = 0]. Time-dependent correlation functions also display
scaling behaviour; e.g., the frequency) @ependent correlation function has the scaling
form to Eq. (30).

G(k™Zw, kT h/T(A)

g(k,w;t, h) = R ) (31)
This scaling behaviour is associated with the divergent¢befelaxation time
T~ &, (32)

referred to as critical slowing down; hetas the dynamic scaling exponent.

In most critical phenomena in equilibrium statistical magites we obtain the simple
scaling forms summarised in the previous paragraph. Thaiaheange behaviours of
structure functions in turbulence (Secs. 2 and 3) are gintlahe power-law forms of
these critical-point correlation functions. This simitgiis especially strong at the level of
K41 scaling (Sec. 4); however, as we have mentioned eaghperimental and numerical
work suggests significamtultiscalingcorrections to K41 scaling with the equal-time mul-
tiscaling exponent$, # ¢*!; in brief, multiscaling implies tha,, is not a linear function
p; indeed [33] it is a monotone increasing nonlinear functbp (see right panel of Fig.
1). The multiscaling of equal-time structure functionsrese¢o be a common property of
various forms of turbulence, e.g., 3D turbulence and passbalar turbulence.

The multifractal model [33,107,108] provides a way of ratiising multiscaling cor-
rections to K41. First we must give up the K41 assumption df @me relevant length
scale/ and the simple scaling form of Eq.( 28). Thus we write the édjuze structure
function as

5p(0) = Cylet)?(5), (39

whered, = ¢, — p/3 is the anomalous part of the scaling exponent. We start \ith t
assumption that the turbulent flow possesses a range ohgoaliponents: in the set
I = (hmin, hmaz)- FOr eachh in this range, there is a s&, (in real space) of fractal
dimensionD(h), such that, ag/L — 0,

dvg(r) ~ £, (34)

if r € ¥j. The exponent&,in, hmaz) are postulated to be independent of the mechanism
responsible for the turbulence. Hence

Sy(0) ~ / dpu(h)(¢/ L)Ph+3-D0), (35)

where theph term comes fronp factors of (¢/L) in Eq. (34) and the3 — D(h) term
comes from an additional factor 6f/L)3>~P ("), which is the probability of being within
a distance of- ¢ of the set:;, of dimensionD (%) that is embedded in three dimensions.
The co-dimensiorD(h) and the exponents,,;, andh,,,, are assumed to be universal
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[33]. The measuréu(h) gives the weight of the different exponents. In the lidfiL. — 0
the method of steepest descent yields

Cp = infrlph + 3 — D(h)]. (36)

The K41 result follows from Eqg. (36) if we allow for only onelua of h, namely,h = 1/3
and setD(h) = 3. For more details we refer the reader to [33,107,108]; thereston to
time-dependent structure functions is given in Refs. [83,@9].

Exact results for multiscaling can be obtained for the Kiragn model of passive-scalar
turbulence. We outline the essential steps below; detailgime found in Ref. [34].

The second-order correlation function is defined as

Os(1,t) = (0(x, t)0(x +1,t)). (37)

Here the angular brackets denote averaging over the gtaitigtthe velocity and the force
which are assumed to be independent of one another [34].fuiation of motion

8o (L,1) = (3:0(x, )0(x + L, 1)) + (0(x, 1)D,0(x + 1, 1)) (38)

is easy to solve by first by using the advection-diffusionagun and then using Gaussian
averages to obtain [34]

l
Ly )
(39)

D1Cs(1) = DyI* =49y [(d — 1)197 0y (1)] 4 2w =40, [197 10, O (1)] + ®(—

whered (- ym ) is the spatial correlation of the force [34] (notice that veswrwork with just
the scalai for the isotropic case). In the stationary state the timévetve vanishes on
the left hand side. We impose the boundary conditions tft,-a oo, C2(l) = 0, and
C5 (1) remains finite wheth — 0, whence

Coll) = —— /OO i dr/T<I>( D yitdy. (40)
@d@=1D1 )i w415 Jo La

In the limit{; << [ << L1, the second-order structure function has the followindjsga
form,

2
(2-§(d—-1)D;
i.e., equal-time exponent§ = 2 — &; this result follows from dimensional arguments as

well. For orderp correlation functions the equivalent of Eq. (38) can betemitsymboli-
cally as [34]

Sa(l) = 2[C2(0) — C2(1)] = (0)1°7¢, (41)

0,Cp = —M,C, 4+ D,Cp, + F @ Cpp_o (42)
where the operatal/,, is determined by the advection terf, is the dissipative operator,

and F' is the spatial correlator of the force. In the limit of varigh diffusivity, and in
stationary state, the above equation reduces to
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M,Cp=F ®Cp_s. (43)

The associated homogeneous and inhomogeneous equatiobs salved separately. By
assuming scaling behaviour, we can extract the scalingresqgdrom simple dimensional
analysis (superscriptim) to obtain

G =22 -4 (44)

The solutionZ,(Ar1, Arz...Ar,) of the homogeneous part of Eq. (43) are called the
zero-mode of the operatdt,,. The zero-modes have the scaling property

Zp(Ar1, Arg. Ary) ~ A% Z, (g, 1.y). (45)

Their scaling exponent§; " cannot be determined from dimensional arguments. The
exponentg;><"° are also called anomalous exponents. And for a particuldererthe
actual scaling exponent is

G = min(G77, ) (46)

This is how multiscaling arises in Kraichnan model of passiealar advection. The prin-
cipal difficulty lies in solving the problem with a particulaoundary condition. In recent
times the following results have been obtained: Althoughghaling exponents for the
zero-modes has not been obtained exactly for gnhgxcept forp = 2 (in which case
the anomalous exponent is actually subdominant), petivebanethods have yielded the
anomalous exponents. Also, it has been shown that the walltig disappears faf > 2
or ¢ < 0 and that, although the scaling exponents are universagrtigitudes depend on
the force correlator and hence the structure functions $eéras are not universal. These
results have been well supported by numerical simulations.

Several studies of the multiscaling of equal-time struetiunctions have been carried
out as outlined above. By contrast there are fewer studigheomultiscaling of time-
dependent structure functions. We give an illustrativengxle for the Kraichnan model
of passive-scalar advection. For simplicity, we look at Ehderian second-order time-
dependent structure function which is defined, in Fouriecspas [46,110]

FOk,to,t) = (O(=k, t0)0(k, 1)) (47)

In order to arrive at a scaling form foF (k, to, t), we look at its equation of motion:

OF° (k, to,t _ 00(k, t

071D _ (-t 1) 22001, (48)
A spatial Fourier transform of the advection-diffusion atjon (13) yields

20(k) . _

L0~ i [ hyulaiic - aty — w00, 9)

so (48) maybe expanded as

dﬁé’ (k7 th t)

yr = ik; /<é(_k, to)uj(q)f(k — q,t))d%q — kkk; (0(—k, to)0(k,t)).

(50)
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The above equation is solved with the help of Gaussian airegadhe first term reduces
to

. . o0 . 5 -
(B to)u; (@)f(k - q, 1) = / (g (s ) (0 t0) 500k — @, )
(51)
Equations (14) and (49) yield
%’tto’” = —2k;k; /0 b Di;jd%qF (k, to,t). (52)

Since2 [;° D;;d’q = D°(L) ~ L, the equation of motion of the second-order structure
function for the Eulerian field becomes
8F9(T7 th t) _ Lf aQ‘Fe(Tv th t)
ot or? ’

(53)

whence [46]

F(k, to,t) = ok, to)e F L. (54)

Thus it is clear that within the Eulerian framework we getragie dynamic scaling expo-
nentz = 2.
A similar analysis for the quasi-Lagrangian time-depend&ncture function [46] gives

8F(T, to, t)
ot

3f(r,t0,t) __8.7-'(r,t0,t)

= (D%; — Dy ~d;
( 6 J J) 87‘1'((“)” J (Q)Ti(r“)Tj

(55)

A Fourier transform of Eq. (55) yield&(k, to, ) o exp|[—t/7], wherer = k=2, which
implies a simple dynamic scaling exponent 2 — £ in the quasi-Lagrangian framework.
In Sec. 6.2 we discuss dynamic scaling and multiscaling &l shodels.

6. Numerical Simulations

Numerical studies of the models described in Sec. 3 haveibated greatly to our un-

derstanding of turbulence. In this Section we give illustenumerical studies of the 3D
Navier-Stokes equation (Sec. 6.1), GOY and advectionssiifin shell models (Sec. 6.2),
the 2D Navier-Stokes equation (Sec. 6.3), the 1D Burgerstemu(Sec. 6.4) and the
FENE-P model for polymer additives in a fluid (Sec. 6.5).

6.1 3D Navier-Stokes Turbulence

We concentrate on the statistical properties of homoges@sotropic turbulence, so we
restrict ourselves periodic boundary conditions. Evernhese simple boundary condi-
tions, simulating these flows is a challenging task as a vadge of length scales has to be
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resolved. Therefore, state-of-the-art numerical siniutet use pseudo-spectral methods
that solve the Navier-Stokes equations via Fast Fouriastoams [111,112] typically on
supercomputers. For a discussion on the implementatioheopseudo-spectral method
we refer the reader to Refs. [111,112]. We outline this mgthelow: (a) Time marching
is done by using either a second-order, slaved Adams-Bakhdoa Runge-Kutta scheme
[113]. (b) In Fourier space the contribution of the viscoesrt is vk%u. (c) To avoid
the computational costs of evaluating the convolution beeaf the non-linear term, it is
first calculated in real space and then Fourier transforimenice the name pseudo-spectral
method. (d) In Fourier space the discretized Navier-Sttikes evolution us

1 — exp(—vk?6t)
vk?

wheren is the iteration numbesy indicates the non-linear term, aft}; = (6, —k;k; /k?)
is the transverse projector which guarantees incompiiigsil{e) To suppress aliasing
errors we use a/3 dealiasing scheme [112].

We give illustrative results from a direct numerical sintida DNS with 10243 that we
have carried out. This study uses the stochastic forcind.@#]Jand has attained a Taylor
microscale Reynolds numbdte, ~ 100, whereRey = upms\/V; Urms = +/2FE/3
is the root-mean-square velocity and the Taylor microsaate /> E(k)/ Y k2E(k).
For state-of-the-art simulations with up46962 collocation points we refer the reader to
Ref. [79]. As we had mentioned in Sec. 2, regions of high etytiare organised into
slender tubes. These can be visualised by looking at ism=esfoflw| as shown in the
representative plots of Figs 2 and 3. The right panel of Figsh@ws the PDF ofw|;
this has a distinctly non-Gaussian tail. The structure ghHiv| vorticity tubes shows
up especially clearly in the plots of Fig. 3, the second anidithanels of which show
successively magnified images of the central part of thegfasel (for 40963 version see
Ref. [79]).

u™ ! = exp(—vEk25t)u" + Py[(3/2N" — (1/2)N™ Y]

0 20 40 |60| 80 100 120
)|
Figure 2. (Color online) (Left) Isosurface plot dfv| with |w| equal to its mean value.

(Right) A semilog plot of the PDF dfv|.

One method to look at these structures is to study the joirk BLthe invariants) =
—tr(A?)/2 andR = —tr(A3)/3 of the velocity gradient tensor. The zero-discriminant or
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Figure 3. (Color online) (Left) Isosurface plot div| with |w| equal to one standard
deviation more than its mean value. (Center) A magnifiedioarsf the central part of
the panel on the left. (Right) A magnified version of the cainpart of the panel in the
middle.

-0.8 -06 -04 -02 0 02 04 06 08 -2 0 2 4

R vxlc

Figure 4. (Color online) (Left) Joint PDRP(Q*, R*) of R* = R/(si;s:;)*/? and
Q" = Q/(si;s:;) calculated from our DNS. The black curve represents the-disro
criminant (or Vieillefosse) lin@7R?/4 + Q* = 0. The contour levels are logarith-
mically spaced. (Right) PDF of the-component of the velocity (here denotes the
standard deviation); the parabolic curve is a Gaussiarighiswn for comparison.
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Figure 5. (Color online) (Left) The compensated energy spectkfrﬁE(k) versus

kn, wheren is the dissipation scale from our DNS (see text). (Right) BbFvelocity

increments that show marked deviation from Gaussian betayinnermost curve),
especially at small length scales; the outermost PDF ishiwrelocity increment with
the shorter length scale.

Vieillefosse lineD = 27R?/4 + Q3 = 0 divides the QR plane in different regions. The
region with D > 0 is vorticity dominant (one of the eigenvalues4fis greater than zero
whereas the other two eigenvalues are imaginary); the meie< 0 is strain dominated
(all the eigenvalues ofl are real). The region® > 0 andD < 0 can be further divided
into two more quadrants depending upon the sign of the e&ees. In the left panel of
Fig. 4 we show a representative contour plot of the joint FE{E)*, R*) obtained from
our DNS. The shape of the contour is like a tear-drop, as ieexpents [63], with a tail
along the lineD = 0 in the region wheré?* > 0 and@* < 0. The plot indicates that, in a
numerical simulation, most of the structures are vorticdkbere also exist regions of large
strain. For a more detailed discussion of the above claasdit of different structures we
refer the reader to [63,115].

The left panel of Fig. 5 shows a plot of the compensated engpggtrumk®/? E (k)
versuskn (n is the dissipation scale in our DNS). The flat portion at lbwindicates
agreement with the K41 forrt 41 (k) ~ k=5/3. There is a slight bump after that; this
is referred to as a bottleneck (see Ref. [116] and Sec 6.d)slctrum then falls in the
dissipation range. The right panel of Fig. 5 shows PDFs afaigt increments at different
scalesr. The innermost curve is a Gaussian for comparison; the rews§&an deviations
increase as decreases.

We do not provide data for the multiscaling of velocity sture functions in the 3D
Navier-Stokes equation. We refer the reader to Ref. [60pfoecent discussion of such
multiscaling. Often the inertial range is quite limited ch studies. This range can be
extended somewhat by using the extended-self-simild&i8S) procedure [117] in which
the slope of a log-log plots of the structure functi®nversusS, yields the exponent ratio
(p/Cq: this procedure is especially usefukif= 3 since(s = 1 for the 3D Navier-Stokes
case. We illustrate the use of this ESS procedure in Seg.d6.3D turbulence.

The methods of statistical field theory have been used withessuccess to study the
statistical properties of a randomly forced Navier-Stokgsiation [25,26,30,31]. The
stochastic force here acts at all length scales; it is Gansaid has a Fourier-space co-
variance proportional t¢'~¥. Fory > 0, a simple perturbation theory leads to infrared
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divergences; these can be controlled by a dynamical rerdizatian group for sufficiently
smally; for y = 4 this yields a K41-typé—>/3 spectrum at the one-loop level. This value
of y is too large to trust a low, one-loop result; also, foy > 3, the sweeping effect
leads to another singularity [118]. Nevertheless, thisloamly forced model has played an
important role historically. Thus it has been studied nuoadly via the pseudo-spectral
method [119,120]. These studies have shown that, even lthihiegstochastic forcing de-
stroys the vorticity tubes that we have described abovégitly multiscaling of velocity
structure that is consistent, fgr= 4, with the analogous multiscaling in the conventional
3D Navier-Stokes equation, barring logarithmic corrawsiowe will discuss the analogue
of this problem for the stochastically forced Burgers etumin Sec. 6.4.

6.2 Shell Models

Even though shell models are far simpler than their parerigbaifferential equations
(PDESs), they cannot be solved analytically. The multisgpbf equal-time structure func-
tions in such models has been investigated numerically sgrakgroups; an overview of
earlier work and details about numerical methods for tHé stell-model equations can
be found in Refs. [45,46,121]. An illustrative plot of eqitimhe multiscaling exponents
for the GOY shell model is given in the right panel of Fig. 1.

We devote the rest of this Subsection to a discussion of timarmic multiscaling of
time-dependent shell-model structure functions that lesntelucidated recently by our
group [45,46,109,110]. So far, detailed numerical studiessich dynamic multiscaling has
been possible only in shell models. We concentrate on tigpeddent velocity structure
functions in the GOY model and their passive-scalar anasg the advection-diffusion
shell model.

In a typical decaying-turbulence experiment or simulatiemergy is injected into the
system at large length scales (smll it then cascades to small length scales (ldpe
eventually viscous losses set in when the energy reachedigbipation scale. We will
refer to this as cascade completion. Energy spectra anctsteufunctions show power-
law forms like their counterparts in statistically steadybulence. It turns out [46] that
the multiscaling exponents for both equal-time and timpeshgent structure functions are
universal in so far as they are independent of whether theynaasured in decaying tur-
bulence or the forced case in which we get statisticallydstéarbulence.

Furthermore, the distinction between Eulerian and Lagearfgameworks assumes spe-
cial importance in the study of dynamic multiscaling of thtiependent structure functions.
Eulerian-velocity structure functions are dominated by $lveeping effect that lies at the
heart of Taylor's frozen-flow hypothesis; this relates gdatnd temporal separations lin-
early (see Sec. 2) whence we obtain trivial dynamic scaliit@ wynamic exponents
25 = 1 for all p, where the superscrif stands for Eulerian. By contrast, we expect
nontrivial dynamic multiscaling in Lagrangian or quasigtangian measurements. Such
measurements are daunting in both experiments and direwemcal simulations; how-
ever, they are possible in shell models. As we have mentiom&kc. 3, shell models
have a quasi-Lagrangian character since they do not haaet diveeping effects. Thus we
expect nontrivial dynamic multiscaling of time-dependsnticture functions in them.

Indeed, we find that [45,46,103] that, given a time-depenskeucture function, we can
extract an infinity of time scales from it. Dynamic scalingsétze [cf., EqQ. (4)] can then
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be used to extract dynamic multiscaling exponents. A gdéisatan of the multifractal
model then suggests linear relations, referred to as bralggons, between these dynamic
multiscaling exponents and their equal-time counterpdrtese can be related to equal-
time exponents via bridge relations. We show how to checseligidge relations in shell
models. However, before we present details, we must define-dependent structure
functions precisely.

The orderp, time-dependent, structure functions, for longitudinalbeity increments,
duy(x,r,t) = [u(x +r,t) — u(x, )] and passive-scalar incrementé(x, ,r) = 6(x +
r,t) — 6(x,t) are defined as

.7:;,‘(7’, {t1,...,tp}) = <[5uH (x,t1,7) ... du| (x,tp, 7’)]> (56)
and
Fo(r e, s tp) =< [60(x, t1,1)...60(x, tp, )] >; (57)
i.e., fluctuations are probed over a length scaMhich lies in the inertial range. For
simplicity, we considet; = ¢t andt, = ... = ¢, = 0 in both Eq. (56) and Eq. (57).

Given F¥(r,t) and F(r, t), we can define the ordex-degreea/, integral-time scales
and derivative-time scales as follows [46]:

(1/M)
T (r,t) [ S / Fi(r M‘”dt} ; (58)
1,6 1 * e (M—-1) (/A0
7, (r, t) = [Sg(r) /0 Fo(r,t)t dt} ; (59)
(1 OME(r, )]V
TD,u t) = P\ . 60
p,M (T7 ) _S;;’('f') atM :| ) ( )
- OMFO (1t (=1/M)
TP 1) = [ p(?) . (61)
P, _Sg(r) otM

Integral-time dynamic multiscaling exponerzlés}& for fluid turbulence can be defined

via 7!} (r,t) ~ v and the derivative-time oneg’;; by T (r,t) ~ r’» 2. They
satlsfy the foIIowmg bridge relations [46]:

2yt =1+ Gt = Gl/M; (62)

Zt =1+ G — Grm] /M. (63)

For passive-scalars advected by a turbulent velocity fieklcorresponding dynamic mul-
1,6 D,o .
tiscaling exponents are defined’@é}&(r, t) o< répm and?;f’];f (r,t) o< r*r.n; they satisfy
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the following bridge relations involving the scaling exgurts¢,,; of equal-time, orde/
structure functions of the advecting velocity field:

o _ Cm DO _q_ C—M. (64)

z = _—— z =
p,M M’ p,M M

These bridge relations, unlike Eq. (62) and Eq. (63), arepeddent op. [Recall that,
for the Kraichnan model, we have already shown in Sec. 5 tleatj@t simple dynamic
scaling.]

GOY-model equal-time structure functions and their asgediinertial-range exponents
are defined as follows:

Sitthn) = (Tun (s (OF/2) ~ k. (65)
The time-dependent structure function are

Fit (s to, 1) = (un (to)ui (to + D]7/2) (66)
We evaluate these numerically for the GOY shell model [nucaédetails may be found
in Refs. [45,46]], extract integral and derivative time Iesafrom them and thence the

exponents:;_j{‘ andzﬁ“, respectively, from slopes of log-log plots @ﬁ‘(n) versusk,,
(right panel of Fig. 6) and dﬂféu(n) versusk,, (right panel of Fig. 7).
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Figure 6. (Color online) (a) A r'epresentative plot of the normalisedirth order
time-dependent structure function versus the dimensisriiener obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from tdpdttom). (b) A log-log
plot of Ti‘i“(n) versusk (for convenience, we have dropped the subseriptthe label

of the x-axis in the figure); a linear fit gives the dynamic nistsaling exponenti’f.

There is excellent agreement (within error bars) of the isealing exponentséf and

zzfé“, obtained from our simulations, with the values computedithe appropriate bridge
relations using the equal-time exponeits,
For the passive-scalar case, the equal-time opdsricture functions is

S0 (k) = {0 (/2 ) ~ b (67)
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Figure 7. (Color online) (a) A 'representative plot of the normalisextts order
time-dependent structure function versus the dimensisriiener obtained from the
GOY shell model. The plots are for shells 4, 6, and 8 (from wattom). (b) A
log-log plot ofTﬁ’?Q’“(n) versusk (for convenience, we have dropped the subserijt
the label of the x-axis in the figure); a linear fit gives the ayric multiscaling exponent

D,u
255 -

and its time-dependent version is

Ff (k. to, t) =< [0n(t0)0, (to + )7/ > . (68)
We consider decaying turbulence here wigha time origin. It is useful now to work
6
with the normalised time-dependent structure funct@ﬁ(,mto,t) = % For the
P mnsvs

case of passive-scalars advected by a velocity field whitbrizulent (a solution of the
GOY model), we calculate the integral (fdf = 1) and derivative time scales (fad = 2)
corresponding to Eq.(58) and Eq.(60), respectively. Topesbf a log-log plot oﬂ”zfy’f(n)

X
vsk, yields the integral time scale exponefﬁ,f, sinceT;’f(n) o kn . Likewise, from

plots of the derivative time scales we extract the expoggﬁ. For a detailed discussion
on dynamic multiscaling in this model we refer the reader éfsR[46,109].

6.3 2D Navier-Stokes Turbulence

We now consider illustrative numerical calculations fag #D NS equations (9)-(11). We
begin with periodic boundary conditions for which we can aggseudo-spectral method
similar to the one given in the previous Subsection for theNdbcase. We study decay-
ing turbulence first with the source functignthez component of the curl of some force
V x F) set to 0. We us&024? collocation points and the standa2d3 dealiasing pro-
cedure; for time marching we use a second-order Runge-Koktame [113]. Our initial
condition |w(k)|?> = k3 exp(—k?) leads to a forward cascade. We seed the flow with
Lagrangian tracers and use a cubic spline interpolatiomoteto calculate their trajecto-
ries [122]. Representative plots from our from our DNS arevghin Fig. 8. The first
part (Fig. 8a) shows a compensated energy speckrifik) for the case with no Ekman
friction. Figure 8b, from a DNS with Ekman frictiomg = 0.1, Kolmogorov forcing [89],
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and periodic boundary conditions, shows a trajectory ofgrémagian tracer superimposed
on a pseudocolour plot of the vorticity field at time= 100; the tracer starts at the point
marked with a circlef{(= 0) and ends at the star £ 100). For a state-of-the-art simulation
that resolves both forward and inverse cascades in a forbidd 2D turbulence we refer
the reader to Ref. [123]; such DNS studies have also invastijthe scaling properties
of structure functions and have provided some evidencedofocmal invariance in the
inverse cascade inertial range [124].
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Figure 8. (Color online) (a) A Ibg-log plot of the compensated energgcirum
kSE(k) versusk from our DNS, of resolutiori0242, of two dimensional decaying
turbulence with periodic boundary conditions. The flat oeghdicates a scaling form
E(k) ~ k~3. (b) The trajectory of a single Lagrangian particle ovenaetof order 100
in a two-dimensional flow with drag and forcing. The startpaint of the trajectory is
in the middle of the box and is indicated by a red circle; the point is indicated by a
blue star. The trajectory is superimposed on a pseudoclzibofthe vorticity field cor-
responding to the time at the end of the Lagrangian trajgcidre figure corresponds to
a forced DNS of resolutioh0242 with periodic boundary conditions, statistical steady
state, and with a coefficient of Ekman friction: = 0.1.

0.5 1

We end with an illustrative example of a recent DNS study [B&]t sheds light on
the effect of the Ekman friction on the statistics of the fard/cascade in wall-bounded
flows that are directly relevant to laboratory soap-film ekpents [125-128]. The de-
tails of this DNS are given in Ref. [89]. In brief; is driven to a statistical steady state
by a deterministic Kolmogorov forcing,, = ki, ; Fo cos(kin;x), with Fy the amplitude
andk;,; the wavenumber on which the force acts; no-slip and no-paiet boundary
conditions are imposed on the walls. The important non-dsimal control parame-
ters are the Grashof numb@r= 2| F,||2/(k%,;pv*) and the non-dimensional Ekman
friction v = ag/(k},;v), where we non-dimensionaliz€, by 27 /(kin;||F.||2), with
|IFL|l2 = ([, |F.[?dx)'/? and the length and time scales are made non-dimensional by
scalingx by kfni‘ andt by k;fj/u. We use a fourth-order Runge-Kutta scheme for time
marching and evaluate spatial derivatives via secondra@nda fourth-order, centered, fi-
nite differences, respectively, for points adjacent to wedls and for points inside the
domain. The Poisson equation is solved by using a fast-&wisslver [113] andv is
calculated at the boundaries by using Thom'’s formula [89].

Since Kolmogorov forcing is inhomogeneous, we use the deesitiony) = (y) + ¢’
andw = (w) 4+ ', where the angular brackets denote a time average and the fhre
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fluctuating part to calculate the ordervelocity and vorticity structure functions. Since
this is a wall-bounded flow, it is important to extract thetispic parts of these structure
functions [89,129]. Furthermore, given our resolutidd49?), it becomes necessary to use
the ESS procedure to extract exponent ratios. lllustrdtigdog ESS plots for velocity,
Sp(R), and vorticity, S’ (R), structure functions are shown in the left and right panels,
respectively, of Fig. 9; their slopes yield the exponeribstiat are plotted versus the order
p in Fig. 10. The Kraichnan-Leith-Batchelor (KLB) prediati® [75] for these exponent
ratios, namely, X LB /(I LB ~ pp/2 and(;’vKLB/(g”KLB ~ 10, agree with our values for
Cp/C2 but not¢yy /¢y velocity structure functions do not display multiscalippeft panel

of Fig. 10] whereas their vorticity analogs do [note the atuve of the plot in the right
panel of Fig. 10]. Similar results have been seen in DNS studith periodic boundary
conditions [130,123]. Additional results for PDFs of salgroperties can be obtained
from our DNS [89]; these are in striking agreement with expental results [126].
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Figure 9. (Color online) (Left) Log-log ESS plots of the isotropic aof the orderp
velocity structure functions, (R) versusS2(R); p = 3 (purple line with dots)p = 4
(red line with square)p = 5 (green line with triangles), and = 6 (blue line with
circles). According to the KLB predictio,(R) ~ Rg. (Right) Log-log ESS plots
of the isotropic parts of the ordervorticity structure functionss,, (R) versusSz(R);
p = 3 (purple line with stars)p = 4 (red line with square)p = 5 (green line with
triangles), ang = 6 (blue line with circles).
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Figure 10. (Color online) (Left) Plots of the exponent rati@s/@ versugp for the ve-

locity differences. (Right) Plots of the exponent ratigs/¢s’” versusp for the vorticity
differences.
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6.4 The One dimensional Burgers Equation

In this Subsection we present a few representative nuniestiedies of the 1D Burgers
equation. The first of these uses a pseudo-spectral metithdi collocation points,
the 2/3 dealising rule, and a fourth-order Runge-Kutta time-merglscheme. In the sec-
ond study of a stochastically forced Burgers equation (st@\) we use a fast-Legendre
method that yields results in the zero-viscosity limit [1.31

For the Burgers equation with no external forcing and sufitly well-behaved initial
conditions, the velocity field develoghocks or jump discontinuities, which merge into
each other with time. The time at which the first shock appsansually denoted by,.
For all times greater thah, it is possible to calculate, analytically, the scaling exents
(p for the equal-time structure functions 83 = ([u(z+r,t) —u(z)P) ~ Cplr[P +C} 7],
where the first term comes from theemp, and the second term comes from the probability
of having a shock in the intervat|. As a consequence of this we haiéractal scaling :
for 0 < p < 1 the first term dominates leading {§p = p and forp > 1 the second one
dominates giving, = 1. This leads to an energy spectrutiik) ~ k~2. Representative
plots from our pseudo-spectral DNS, with= 10~3 and an initial condition:(z) =sin(z)
(for whicht, = 1) are shown in Fig. 11; the left panel shows plots of the vé&ydield at
timest = 0, 1, andt = 1.5 and the right panel the energy spectrum at 1.
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Figure 11. (Color online) (Left) énapshots of the solution of the Busgequation
obtained from our DNS with initial condition(z) =sinz at timest = 0 (blue),t = 1

(black) andt = 2 (red). (Right) A representative log-log plot &f(k) versusk, at time
t = 1 for the Burgers equation with initial conditiongz) = sinz.

25 3 35 4

The stochastically forced Burgers equation has played apoitant role in
renormalization-group studies [131]. In particular, ddes a Gaussian random force
f(x,t) with zero mean and the following covariance in Fourier space

(f(k1,t1) f (B2, t2)) = 2Do|k|P3(ts — t2)3 (k1 + k2); (69)

here f(k, t) is the spatial Fourier transform ¢f{z, ), D, is a constant, and the scaling
properties of the forcing is governed by the exponéntFor positive values off, the
Burgers equation can be studied by using renormalizationfgtechniques; specifically,
for 3 = 2 one recovers simple (Kardar-Parisi-Zhang or KPZ) scaliith e equal-time
exponent;, = p. It was hoped that forcing with negative valuestf(in particularg =
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—1), which cannot be studied by renormalization-group meshodght yield multiscaling
of velocity structure functions.

However, our high-resolution study [131], which uses a-fagiendre method, has
shown that the apparent multiscaling of structure fundiorthis stochastic model might
arise because of numerical artifacts. The general consénthat this stochastically forced
Burgers model should show bifractal scaling. In Fig. 12 wespnt representative plots
of the velocity field (left panel, blue curve) and the scakxgonents (right panel) for this
model. We have obtained the data for these figures by usingt-d égendre method with
218 collocation points.
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Figure 12. (Color online) (Left) A'snapshot of the velocity field (jagbkne in blue)
in steady state and the force in red from our fast-Legenditb@deDNS of the stochas-
tically forced Burgers equation. (Right) A representafil@ of the exponents,,, with
error-bars, for the equal-time velocity structure funeiaf the stochastically forced
Burgers equation; bifractal scaling is shown by the bladkidime; the deviations from
this are believed to arise from artefacts (see text).

Numerical studies of the Burgers equation have also progetulin elucidating bot-
tleneck structures in energy spectra [132,133](cf., theespm in the left panel of Fig.
5). It turns out that such a bottleneck does not occur in time@ational Burgers equation.
However, it does [134] occur in the hyperviscous one, in Whisual Laplacian dissipa-
tion operator is replaced by its™ power; this is known as hyperviscosity far> 1. We
show a representative compensated energy spectrum foaske e 4 in the left panel of
Fig. 13. We have obtained this from a pseudo-spectral DNB Vit collocation points.
The o — oo limit is very interesting too since, in this limit, the hypéscous Burgers
equation maps on to the Galerkin-truncated version of thsérd Burgers equation. In
this Galerkin-truncated inviscid case, the Fourier motieshalise [135,136]; in a com-
pensated energy spectrum this shows uféls) ~ k2, for largek [see the right panel of
Fig. 13 for the case. = 200]. Such thermalisation effects in the Galerkin-truncatettE
equation have also attracted a lot of attention [137]; ardittk between bottlenecks and
thermalisation has been explored in our recent work [13#Jhizh we refer the interested
reader.
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Figure 13. (Color online) (ﬁeﬁ) A representative log-log plot of a beteck in the
compensated energy spectréfi¥ (k) of a hyperviscous Burgers equation with= 4.
(Right) A representative log-log plot & E (k) versusk for o = 200 at timet = 30.
We see clear signatures of thermalization at ldrgsee text).

6.5 Turbulence with Polymer Additives

In this Subsection, we present a few results from our nurakstady [138] of the analogue
drag reduction by polymer additives in homogeneous, ipitrturbulence. This requires
a DNS of considerably greater complexity than the ones we ligscribed above. A
naive pseudospectral method cannot be used for the FENBdeImgiven in Eqs. (18)
and (19): the polymer conformation tengbis symmetric and positive definite; however,
in a practical implementation of the pseudo-spectral nmetihdoses this property. We
have employed a numerical technique that uses a Choleskymexsition to overcome
this problem; we refer the reader to Ref. [138] for theseitieta

Our recent DNS of this model has shown that the natural analalgag reduction in
decaying, homogeneous, isotropic turbulence is dissipatduction; the percentage re-
duction DR can be defined as

fm _ pm
el

here the superscripsandp stand, respectively, for the fluid without and with polymers
and the superscript indicates the time,,, at which the cascade is completed. The de-
pendence of DR on the polymer concentration parameterd the Weissenberg number
may be found in Ref. [138]. Here we show how the addition of/pwrs reduces small-
scale structures in the turbulent flow: By a comparison ofislesurfaces ofw| in the
left (without polymers) and right (with polymers) panelski§. 14, we see that slender
vorticity filaments are suppressed by the polymers; this gpialitative agreement with ex-
periments [93]. The PDFs ¢b|, with and without polymers (left panel of Fig. 15) confirm
that regions of large vorticity are reduced by polymers. Tigkt panel of Fig. 15 shows
how the polymers modify the energy spectrum in the dissiypatange; this behaviour has
been seen in recent experiments [96], which study the secniet structure function that
is related simply to the energy spectrum. For a full disarssif these and related results
we refer the reader to Ref. [101,138].
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Figure 14. (Color online) Constanfw| isosurfaces fotw| = (Jw|) + o at cascade
completion without and (Right) with polymers & 0.4); (|w|) is the mean and the

standard deviation dt|.
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Figure 15. (Color online) (Left) PDF ofw at cascade completion without & 0)
and with polymersd = 0.4). Note that regions of large vorticity are reduced on the
addition of polymers. (Right) Representative plots of thergy spectra&? ™ (k) or
Ef™ (k) versusk for ¢ = 0.1 (blue dashed line) and= 0.4 (solid line).
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7. Conclusions

Turbulence provides us with a variety of challenging praoide We have tried to give
an overview of some of these, especially those that deal thélstatistical properties of
turbulence. The choice of topics has been influenced, ofsepuny the areas in which
we have carried out research. For complementary, recentiews we refer the reader to
Refs. [1-3]; we hope the other reviews and books that we hiéeé t© will provide the
reader with further details.

We would like to thank CSIR, DST, and UGC (India) for suppartd SERC (lISc) for
computational resources.
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eccccpeccas

1 GF11 infinite volume K-input
® CP-PACS K-input
O CP-PACS @-input




