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A Vi
torian Age Proof of the Four ColorTheoremI. Cahitemail:i
ahit�gmail.
omAbstra
tIn this paper we have investigated some old issues 
on
erning four
olor map problem. We have given a general method for 
onstru
ting
ounter-examples to Kempe's proof of the four 
olor theorem and thenshow that all 
ounterexamples 
an be rule out by re-
onstru
ting spe
ial
2-
olored two paths de
omposition in the form of a double-spiral 
hain ofthe maximal planar graph.In the se
ond part of the paper we have given an algorithmi
 proof of thefour 
olor theorem whi
h is based only on the 
oloring fa
es (regions) of a
ubi
 planar maps. Our algorithmi
 proof has been given in three steps.The �rst two steps are the maximal mono-
hromati
 and then maximaldi
hromati
 
oloring of the fa
es in su
h a way that the resulting un
olored(white) regions of the in
omplete two-
olored map indu
e no odd-
y
lesso that in the (�nal) third step four 
oloring of the map has been obtainedalmost trivially.1 Introdu
tionFour 
olor map 
oloring problem is to 
olor regions of a (normal) map M with atmost four 
olors so that neighbor regions (
ountries) would have re
eive di�erent
olors. This simple problem posed and 
onje
tured to be true for all maps byGuthrie in 1852 [1℄,[32℄. Its 
orre
t proof was �rst given in 1976 and repeatedseveral times by the same method by the help of a 
omputer [2℄-[5℄. The authorhas given two non-
omputer proofs of the four 
olor theorem based on spiral
hains in planar graphs [6℄,[7℄,[8℄.In this paper we will give another one based on step-wise mono-
hromati

oloring, two 
oloring and then four 
oloring of any given normal map M , i.e.,four 
oloring of the fa
es of any 
ubi
 planar graph. Therefore our proof suitswith the mathemati
s of the Vi
torian age [9℄ in whi
h the four 
olor problemarose. In order to make a smooth transition to the proof we will re-investigateparti
ularly 
ounter-examples ("bad" examples) to Kempe's proof. Mi
haelRosellini in his undergraduate proje
t summaries existing proofs together withthe histori
al initial e�orts. For his study of an 
ounter-example he has 
hosenthe paper of Holroyd and Miller entitled "The example that Heawood should1
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have given" [10℄ whi
h is a
tually same example given by Errera [31℄ but drawnin the plane di�erently [11℄. A 
lose look to that example reveals a propertywhi
h leads to a general method for 
onstru
ting a 
lass of 
ounter-examples. Onthe otherhand we have given a method to re-
olor verti
es of the "bad" maximalgraph around the unde
ided degree �ve vertex for whi
h Kempe's argument mayfail, so that under the resulting four 
oloring the graph is de
omposed into edgedisjoint two paths. Furthermore the shape of the paths as seen from the Figure1 is a double-spiral 
hain 
entered at the unde
ided vertex. Of 
ourse any four
oloring of G indu
es edge disjoint two bipartite graphs but not ne
essarily
onne
ted and in the form of a double-spiral. We have also suggest surveys onthe early developments of the four 
olor problem by Saaty [12℄ and Mit
hem[13℄.The notion of equitable 
olorability was introdu
ed by Meyer [17℄. Thatis the sizes of 
olor 
lasses di�er by at most one. Similarly equitable labelingof graphs introdu
ed by the author in 1990 [18℄. However, an earlier work ofHajnal and Szemérdi [19℄ showed that a graph G with degree ∆(G) is equitably
k-
olorable if k ≥ ∆(G)+1. In 1973, Meyer formulated the following 
onje
ture:Conje
ture 1 (Equitable Coloring Conje
ture (ECC) [17℄). For any 
on-ne
ted graph G, other than a 
omplete graph or an odd 
y
le, χ=(G) ≤ ∆(G).The Equitable k-Coloring Conje
ture holds for some 
lasses of graphs, e.g.,outerplanar graphs with ∆ ≥ 3 [20℄ and planar graphs with ∆ ≥ 13 [21℄. How-ever the four 
olorings given for bad-examples in Figure 1 are all equitable
4-
oloring.We have the following 
laim:Claim. Let G be a maximal planar graph. Then there exits 4-
oloring of Gfor whi
h at least the sizes of three 
olor 
lasses di�er by at most one.2 Bad Examples for Kempe's ArgumentAfter studying all known bad-examples to Kempe's argument one 
an rea
h tothe 
on
lusion that it is o

urred only for spe
i�
 planar graphs with spe
i�
in
omplete four-
oloring. Gethner et. al. [22℄,[23℄ have investigated Kempe's�awed proof of the Four Color Theorem from a 
omputational and histori
alpoint of view. Kempe's "proof" gives rise to an algorithmi
 method of 
oloringplanar graphs that sometimes yields a proper vertex 
oloring requiring four orfewer 
olors. They also investigate a re
ursive version of Kempe's method anda modi�ed version based on the work of I. Kittell [30℄.Let G be an maximal planar graph with n verti
es.Let T be the triangulationof G. Let G1 ∈ {P1, C1} and G2 ∈ {P2, C2} be two vertex disjoint paths or 
y-
les su
h that |G1| ≈ |G2| and |G1|+|G2| = n if under su
h a de
omposition of Gevery triangle ti has exa
tly one edge either from G1 or G2 then we say triangu-2
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ounterexamples to Kempe's "proof" with double-spiral
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(d) (e)Figure 2: Step-by-step resolution of an impasse in the Errera's graph.3



lation T as β-triangulation. If |C1| ≡ |C2| ≡ 0(mod2) then 4-
oloring of G easily
an be obtained. For example in Figure 1 for Frit
h's graph |P1| = 3, |P2| = 4,for So�er's graph |P1| = 4, |P2| = 3, for Errera's graph |P1| = 8, |P2| = 7, forPoussin's graph |P1| = 7, |P2| = 6, for Kittell's graph |P1| = 10, |P2| = 11 and �-nally for Heawood's graph |P ∗

1 | = 12, |P ∗

2 | = 11, where P ∗

1 , P ∗

2 are a
y
li
 graphs.We 
hoose the four 
olors as {Red,Blue,Yellow,Green} or for another reason
{Brown,Green,darkBlue, lightBlue} or {1, 2, 3, 4}. Moreover white 
oloredvertex or region in a map means awaiting 
olor from the four-
olor set.One of the important property of an "real" bad-example to Kempe's ar-gument is that o

urren
e of Kempe tangling must be independent from theorder of the sele
tion of Kempe-
hains. For example Errera's bad example(�rst in
omplete 4-
oloring of Figure 2) satis�es this 
ondition. Now 
on-sider C5,in = {B, G, R, G, Y } that surrounds unde
ided white vertex. Con-sider also two disjoint 2-
olored 
y
les of length six (shown dashed lines),i.e.,
C6,in = {R, G, R, G, R, G} and C6,out = {B, Y, B, Y, B, Y } whi
h forms an tri-angulated ring [24℄. After 
y
li
ally shifting the 
olors in C6,in, insert the Red"joker" 
olor instead of Blue vertex in C5,in = {B, G, R, G, Y }. Then the threeKempe 
hain swit
hings; Ch(R, Y, R, Y ), Ch(R, B) and Ch(R, Y, R, Y, R, Y, R)(see Figure 2) resolves the impasse and a double spiral 
hain results [25℄.2.1 Constru
tion of a 
lass of bad-examplesA triangulated ring is a 2-
onne
ted planar graph Gr with two fa
es Fi and Fowhose fa
ial walks are the (indu
ed) 
y
les Ci and Co respe
tively su
h that:(a) V (Ci) ∪ V (Co) = V (G) and V (Ci) ∩ V (Co) = φ where indi
es i and o arebeing used to denote the inner and outer 
y
les (fa
es)of the graph and (b) everyfa
e other than Fi and Fo is a triangle. We further assume that all trianglesin Gr are of type β-triangle, that is exa
tly one edge of the triangle belongs Cior Co. Sin
e we are interested in small size "bad-example" graphs we 
onsideronly |Ci| = |Co| = 4, 6. Let us give a simple lemma �rst.Lemma 1. A triangulated ring Gr with a β-triangulation and with |Ci| =
|Co| ≡ 0(mod2) 
an be 4-
olored su
h that Ci and Co 
olored disjoint 2-
olor
lasses.Proof. Sin
e the inner and outer 
y
les are of even length; 
olor inner 
y
le,say with blue and red and outer 
y
le with green and yellow. The β-triangulationof Gr prevents any 
olor 
on�i
ts in the four 
oloring.Now we 
an 
onstru
t a maximal planar graph G from Gr as follows: (i)Pla
e an edge ei inside of the inner fa
e Fi and pla
e also an edge eo inside ofthe in�nity (�nite if the map embedded on sphere) outer-fa
e Fo. (ii) Make amaximal planar graph G by joining the end verti
es of ei with the verti
es of Fiand by joining the end verti
es of eo with the verti
es of Fo su
h that resultingtriangulation is a β-triangulation and eo is an outer-edge of G. We say inner-
y
le Ci,in is a hand
u�s for the inner-edge ei. Similarly we say outer-
y
le
Ci,out is a hand
u�s for the outer-edge eo. The reason of this terminology willbe 
learer when we extra
t bad-examples for Kempe's argument from G. We4



will be interested in the following four 
oloring of G: Color verti
es of Ci,in and
eo by R and B 
olors and 
olor verti
es of Ci,out and ei by Y and G 
olors.This four 
oloring of G is an proper 
oloring sin
e under the 
y
le and edgede
omposition, the triangulation is a β-triangulation. In 
ase of 
y
les are oflength six, let C6,in = {u1, u2, ..., u6}, eo = {u7, u8} and C6,out = {v1, v2, ..., v6},
ei = {v7, v8}. Let us assume that under the β-triangulation of G we also havetwo spe
ial Kempe-
hains as follow:(i) (Y, R)-
hain ⇒ ch(v1, u2, v7, u6, v5, u7)(ii) (Y, B)-
hain ⇒ ch(v1, u1, v7, u3, v5, u8)Now we are ready to 
onstru
t the twin-bad-example graphs for Kempe's argu-ment.(a) Twin-graph G1. (Trouble in inner-fa
e). Delete any two edges, otherthan the edges of C6,in and ei, of β-triangulation bounded by C6,in and ei su
hthat the resulting new fa
e F5,in 
ontains the edge ei in its boundary 
y
le oflength 5. For example we have deleted edges (v7u3) and (v8u3) from G andobtain a new 
y
le (fa
e) C5,in = (v7, u2, u3, u4, v8). Now we 
laim that underthe existing four 
oloring of G if we pla
e a new vertex vx inside of fa
e F5,in andjoin all verti
es of C5,in to vertex vx then the resulting in
omplete four 
oloringof the modi�ed planar graph G1 is an bad-example to Kempe's argument. Thatis the four 
olors appear in C5,in = {v7, v8, u4, u3, u2}, (i.e., see Figure 3(b):
(Y, G, R, B, R))
annot be redu
ed to three 
olors by any Kempe-
hain swit
h-ing. One reason of this impasse is that (Y, G) (resp. (R, B)) end-verti
es 
ol-ored edge ei (resp. eo) 
annot be extended due to (R, B) (resp. (Y, G) 
oloredhand
u�s 
y
le. Moreover (G, B)-
hain ch(v8, u5, u8, v2, u3) and (B, Y )-
hain
ch(u3, v3, u8, v1, u1, v7) would prevent to redu
e the number of 
olors to threeon the verti
es of C5,in. Hen
e in
omplete four 
oloring of the maximal planargraph G1 with 17 verti
es shown in Figure 3(b) is an bad-example to Kempe'sargument.Note that we have the same de
omposition as above if we 
onsider;
(G, R) 
y
le C6,in = {v6, u6, v8, u4, v4, u7} and e = {u2v2} and
(Y, B) 
y
le C6,in = {v1, u1, v7, u3, v3, u8} and e = {u5v5}.(b) Twin-graph G2. (Trouble in outer-fa
e). The se
ond bad-examplegraph G2 
an be obtained from G by deleting edges (v1u7) and (v1u8). Outer-
y
le of G2 is C5,out = (u7, v6, v1, v2, u8) that has been 
olored by R, G, Y, G, B(see Figure 3(b)). Now if we pla
e the new vertex vx in the outer-fa
e of G2 andjoin to the verti
es of C5,out then vx 
annot be 
olored by the use of Kempe'sargument.This due to the (Y, R)- and (Y, B)-
hains mentioned in (i) and (ii) before. More-over swit
hing of 
olors of the end-verti
es of the edges (v6u1) or (v2u2) wouldnot redu
e the number of 
olors on C5,out. Hen
e G2 is an bad-example graphto Kempe's argument.In Figure 4(a) and (b) we have shown another twins bad-example graphs G1and G2 with 13 verti
es where the hand
u�s 
y
les C4,in and C4,out are of lengthfour. Moreover 
omparing the known-bad-example graphs shown in Figure 15
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Twin “bad-example”  graphs to Kempe’s argument.

C5,in={R,B,R,G,Y}

C5,out={R,G,Y,G,B}

(a) (b)Figure 3: Four 
oloring of an generator maximal planar graph with β-triangulation: (a) and (b) twin bad-example graphs for the Kempe's argument.the graphs G1 and G2 are the smallest bad-examples in whi
h o

urren
e of animpasse is not depend on the order of Kempe 
hain swit
hing.In Figure 4(
)we also have illustrated double-spiral 
hain four 
oloring of the bad-example ofFigure 4(b). It is not di�
ult to show that this is possible for all bad-examplegraphs [24℄.In the next se
tion we propose a new proof for the four 
olor theorem withoutusing Kempe-
hains based on step-by-step 
oloring of the fa
es of 
ubi
 planarmaps.3 A New Proof of the Four Color Map TheoremA more 
ourageous title of this se
tion would be "How to 
reate a four 
oloredworld in three steps?" It is well-known and without doubt that four 
olor the-orem is true. What are the reasons for a lengthy existing proofs by the useof a 
omputer? One answer would be going to the long way whi
h has beenfor
ed by the false Kempe's "proof", see for example Birkho�'s redu
ibility ofdouble C5 (a
tually overlapped 4 
y
les of length 5),e.g., Birkho�'s diamond6



C5,in={B,R,B,G,Y}C5,out={B,Y,G,Y,R}

x

x

(a) (b)

x

(c)Figure 4: (a),(b)Four 
oloring of twin bad-example maximal planar graphs with
2C4 ∪ {ein} ∪ {eout} and (
) double-spiral 
hain 
oloring of (b)
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(a)

(b)Figure 5: Bad 
on�gurations in a maximal two 
olored map that require �ve
olors: (a) with unwanted spot (this was the 
ase of a bad-example to Kempe'sargument; see 2-
olor hand
u�s 
y
le C6), (b) without unwanted spot.
X

X X

(a)

(b)Figure 6: Good and bad assignments of low-land green-
olor regions in a two-
olored map. 8



[14℄ while 
y
le of length �ve C5 is not redu
ible. Another answer would beover looking di�
ulties of the planar three 
olorability problem in the light ofGrotzs
h and Heawood's theorems [15℄,[16℄. In this se
tion we will be giving anew proof of the four 
olor map theorem in whi
h we have impli
itly by passthe three-
oloring problem of planar graphs within the 
onstru
tive proof.In fa
t our algorithmi
 proof implies the following theorem without relyingon the four 
olor theorem [26℄,[27℄:Theorem 1. Every planar graph 
an be de
omposed into the edge disjointunion of two bipartite graphs.Let us denote by M an normal map with n + 1 regions, where (n + 1)thregion rn+1 is the outer-region of M. M 
an be equivalently represented by a
ubi
 planar graph Gc(M) = (Vc, Ec), where Vc is the set of verti
es asso
iatedwith the 
rossing of pairwise three neighbor regions, and Ec is the set of edgesin the form of Jordan 
urve asso
iate with the boarder of two neighbor regionsbetween two verti
es. In order to make the map-
oloring algorithm more visibleand meaningful let us de�ne the four-
olor set as C = {B, G, dB, lB}, where- B denotes brown 
olor and when it is assigned on to the white ba
kground
olor the 
orresponding region be
omes a "high-land".- G denotes green 
olor and when it is assigned on to the white ba
kground
olor the 
orresponding region be
omes a "low-land".- dB denotes dark-blue 
olor and when it is assigned on to the white ba
kground
olor the 
orresponding region be
omes a "deap sea".- lB denotes light-blue 
olor and when it is assigned on to the white ba
kground
olor the 
orresponding region be
omes a "shallow-sea".Initially the given map 
olored all by ba
kground 
olor white and at the endof the 
oloring algorithm (three steps) it will be 
olored by the 
olors C andno white 
olor remains on the map. Clearly we will show that this is alwayspossible for any map M.By M(B) we denote a map in whi
h maximal number of its regions 
oloredby B (mono-
hromati
 
oloring) where the term maximal means that any ad-ditional brown region (high-land) results 
olor 
on�i
t and all the remainingregions are ba
kground-
olor white. Similarly by M(B, G) we denote a mapobtained from M(B) in whi
h maximal number of its white regions 
olored by
G. Hen
e M(B, G) is an maximal two-
oloring of M .De�nition 1. In a mono-
hromati
 
oloring of map M(B) if an vertex vis not in
ident to any brown 
olored region then v is 
alled unwanted-spot orsimply a spot . Furthermore if the map M(B) is spot-free then the map M(B)is 
alled 
lean map.De�nition 2. Spiraling of a map M is a pro
ess of ordering and labeling thefa
es (regions), starting from the outer-region rn+1 and sele
ting always outernext region ri neighbor to the previous region ri+1 in the form of a spiral.Note that depending on the adja
en
y of the regions of the map M we may9



(a) (b)Figure 7: Spiraling of the Haken and Appel's and Martin Gardner's maps.have several spirals but the ordering of the regions is uniquely determined bythe initial region and next one with the dire
tion sele
ted e.g., 
lo
kwise or
ounter 
lo
kwise. Similar de�nition has been given for maximal and 
ubi
planar graphs in [6℄,[7℄. For an illustration spiraling see the nested three spiralsshown in blue, red and green 
olors in Figure 7.3.1 The Map Coloring Algorithm.Main feature of the 
oloring algorithm is the use of ea
h of the four 
olors one-by-one and preparing the 
onditions satis�ed for the next step.Step 1. Maximal mono-
hromati
 
oloring of high-lands map M(B).Let S = {rn+1, rn, rn−1, ..., r1} be the spiral ordering of the fa
es of map M .Color outer-fa
e rn+1 of M with B. Along the spiral S 
olor next white region
ri ∈ S with B by the following rule:(i) All the �rst neighborhood of the region ri remain in white (un
olored).(ii) If any white region rj , j > i is 
olored, that is c(rj) = B then a 
olor-
on�i
tsarises.(iii) At least one of the se
ond neighborhood region of ri would be 
olored by
B.Using (i)-(iii) and spiraling S the maximal mono-
hromati
 set of k regions 
anbe obtained. Let us 
all the map M after the 
oloring as M(B). Let us alsodenote the spots of M(B) with a set P = {p1, p2, p3, ..., pk} where k < n. Thatis P is the set of triply neighbor white regions of the map M(B) where some ofthe white regions may be overlapped.The output of the step 1 is simply maximal disjoint of highland islands all 
ol-ored in brown.We have also the following simple property of M(B).10



Lemma 2. The spots of the triply neighbor white regions of the map M(B)
annot indu
es a 
y
le.Proof. Let us assume that a region r 
olored by B has been surrounded by an
y
le of spot verti
es. Hen
e regions in the se
ond neighborhood must be alsoall white. But (iii) we have 
olored at least one of the region in the se
ondneighborhood in B and that breaks the 
y
le of the spots into a path.As it has been seen that Step 1 is rather straight forward and map M(B) 
aneasily be obtained for any M . Assuming the maximal mono-
hromati
 
olor-ing of M(B) as a base, it is not su
h an easy task to obtain di
hromati
 map
M(B, G). In the next step we will give the details and proofs that startingfrom mono-
hromati
 M(B) it possible to two-
oloring of M(B, G) with a setof properties that satis�es four 
olorability of the whole map. That is we willshow that by assigning 
olor green (
olor for low-land) to the some of the whiteregions of M(B) we obtain maximal di
hromati
 
oloring of M(B, G) withoutany spots, without any even (B, G)-ring and without odd any W -ring (white-rings in M(B, G)).Let us remind the role of two-
olored even 
y
les (hand
u�s) in 
onstru
tingnew 
ounter-examples to Kempe's argument in Se
tion 2.In Figure 5 we have demonstrated one of reason of an bad assignment of 
olorgreen in M(B). That is even-ring R(B, G) would prevent to 
omplete 
oloringof white regions with four 
olors. Another reason of an bad assignment of 
olorgreen is that, not leaving any room for the other 
olors to vanish the white-spots(see Figure 6 (a) and (b)).Lemma 3. Mono-
hromati
 (green) spiral-
hain 
oloring of the white re-gions of the map M(B) results in a spot-free map M(B, G).Proof.If a spot-vertex remain in M(B, G) it would be one of the bad 
on�gura-tions illustrated in Figures 5 and 6 (b). But this bad 
on�gurations 
an onlyo

ur when green 
olor assigned without 
onsidering the maximum number ofspots of the white region. However this has been prote
ted by Step 2 (i) in thealgorithm.Lemma 4. Two 
oloring of the map M(B, G) 
an be extended to four 
olor-ing i� white-regions of M(B, G) indu
ed a (not ne
essarily 
onne
ted) bipartitesubgraph.Proof. Sin
e the white regions in M(B, G) indu
e a bipartite graphs they 
anbe 
olored with two 
olors (dB, lB). Otherwise the maximal two-
olored map
M(B, G) has an odd 
y
le formed by all white regions and then we need the�fth 
olor.Theorem 2. The map M(B, G) obtained by the Map-Coloring-Algorithmin Step 2 
an be extended to a four 
oloring of M .Proof. Proof follows from Lemmas 2,3,4 and 5.De�nition 3. Let ri, rj , rk ∈ M, i 6= j 6= k. If va, vb ∈ ri, rj and vc, vd ∈
rj , rk, va 6= vb 6= vc 6= vd then the region rj is 
alled tunnel 
onne
ting ri and
rk. 11



The next lemma is related with the two-
olored even-
y
les in M(B, G).Lemma 5. Let M(B, G) be a two 
olorable 
ubi
 planar map without tunnelregions. Let M(B, G) be surrounded by two rings R1 and R2 where R1 is anodd-ring within the �rst neighborhood of M(B, G) and R2 is an even-ring withinthe se
ond neighborhood of M(B, G). If M(B, G) and R2(B, G) have been two
olored by B and G then the map M = R1 ∪ R2(B, G) ∪ M(B, G) 
annot beextended to a four 
oloring.Step 2. Maximal di
hromati
 
oloring of high-low-lands map M(B, G).We use the same spiraling S of the map M(B). While assigning 
olor green Gto a white region 
onsider the following two 
onditions:(i) While assigning green 
olor to white regions give priority to the white-regionwhi
h has maximum number of spot verti
es in M(B);(ii) Do not 
reate any (B, G)-ring R(B, G) whi
h 
ontains an inside odd white-ring R(W ).Lemma 6. The map M(B, G) obtained by the map 
oloring algorithm step1 and 2 has no odd-white 
y
les.Proof. We have eliminated all spot verti
es in M(B, G) so the length of anyodd-white 
y
le would be ≥ 5. Let us assume that there exists a white-ring(
y
le) R5(W ) in M(B, G) of length 5. Let us denote by Min(B, G) the innertwo 
olored map of R5(W ). Let Rout be denote the outer ring that surrounds
R5(W ). In 
ase one of the region ri is an tunnel region then there would bea (B, G)-
hain breaking the white-ring R5(W ). Hen
e the outer ring has �veregions whi
h 
olored byG, B, G, B, W . Then the white region must have a spot-vertex 
ommon with R5(W ). A 
ontradi
tion. Then let us assume that Rout hassix regions (even number). In this 
ase Rout should be 
olored alternatingly by
B and G. But by Step 2 (ii) in the algorithm we don't let any even (B, G)-ringaround the odd-white ring.Step 3. Four 
oloring of M(B, G, lB, dB).Sin
e maximal di
hromati
 map M(B, G) has only even white-rings and a
y
li
white regions, i.e., forest of disjoint trees and paths we 
an easily 
olor themwith light-blue lB and dark-blue dB.That is at the end of Step 3 the initial all-white normal map M transformedinto four 
olored map of M(B, G, lB, dB) with the regions of high-lands, low-lands, deep-seas and shallow-seas.From Theorem 2 we re-state the famous four 
olor map theorem.Theorem 3. All 
ubi
 planar maps are 4-
olorable.

12



3.2 Two well-known mapsThe map 
oloring algorithm has been illustrated by the two well-known maps.Figure 
aptions give the details.
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Figure 8: The Haken and Appel's map. This map has been taken from Ed PeggJr's mathpuzzle.
om/4De
2001.htm. Haken and Appel needed a 
omputer to
4-
olor the following hardest-
ase map, whi
h has been presented in a slightlydi�erent form. In this appendix we will explain step-by-step our algorithmi
proof of the four 
olor theorem on this map.

Figure 9: Maximal mono-
hromati
 
oloring of high-land (brown) regions. Notethat we start 
oloring from the outer region and must be all adja
ent to white(not 
olored) regions. Interse
tion of three adja
ent regions have been shownwith small 
ir
les (unwanted spots) and must be vanished as shown in Figure10 in the maximal 2-
oloring of the map.14



Figure 10: Maximal two 
oloring of high-land (brown) and low-land (green)regions. Green 
oloring starts from the upper white region (
an be started anywhite region adja
ent to outer region). Tra
e of green regions form a spiralingin the 
lo
kwise dire
tion and at ea
h step at least one "
ir
le" of Figure 9 isvanished by the assignment of the green 
olor to a white region.By red-dashed
urves we have shown �ve even white-rings (even-
y
les) around the brown-green(high-lowland)islands. The rest of white regions indu
e an a
y
li
 graph

Figure 11: Four 
oloring of Appel and Haken's map; two 
oloring of deap sea(dark blue) and shallow sea (light blue) regions of the two 
olored map of Figure10. Here two 
olors is enough for the white regions sin
e the indu
ed dual-graphis bipartite. 15



(a) (b)

(c) (d)Figure 12: Martin Gardner's April Fool's joke (1975). (a) The "
ounter-example" map, (b) Brown highland islands, (
) Brown-green high-low islandsand (d) The four 
olored map. Note that (i) ea
h 
olor spiraling in the mapand (ii) white regions in (
) indu
ed disjoint union of a
y
li
 subgraphs. Wagonhas given four 
oloring of the April's Fool's map by using Kempe's originalalgorithm without fa
ing any impasse [28℄,[29℄.
16



4 Con
luding remarksWe extra
t the following from the �rst page of Appel and Haken's paper [3℄:The �rst published attempt to prove the Four Color Theorem was made by A.B.Kempe in 1879. Kempe proved that the problem 
an be restri
ted to the 
onsid-eration of "normal planar maps" in whi
h all fa
es are simply 
onne
ted polygons,pre
isely three of whi
h meet at ea
h vertex. For su
h maps he derived from Euler'sformula the equation
4p2 + 3p3 + 2p4 + p5 =

∑kmax

k=7
(k − 6)pk + 12where pi is the number of polygons with pre
isely i neighbors and kmax is largestvalue of i whi
h o

urs in the map. This equation immediately implies that everymaximal planar map 
ontains polygons with fewer then six neighbors. In order toprove the Four Color Theorem by indu
tion on the number p of polygons in the map

(p =
∑

pi), Kempe assumed that every normal map with p ≤ r is four 
olorableand 
onsidered a normal planar map Mr+1 with r + 1 polygons. He distinguishedthe four 
ases that Mr+1 
ontained a polygon P2 with two neighbors, or a triangle
P3 or a quadrilateral P4, or a pentagon; at least one of these must apply by theequation.This beautiful Vi
torian Age dedu
tion works for Pi, i = 2, 3, 4 and unfortu-nately fails for i = 5. I think no mathemati
ian of that period would be able toguess the possible length of a proof in future based on redu
ibility.In this paper, by 
hoosing dire
t proof, that is the opposite dire
tion of theabove, we have given an algorithmi
 proof for the Four Color Theorem whi
his based on an 
oloring algorithm and avoiding three-
olorability in a maximaltwo-
olorable map. The last word about the proofs given in [6℄,[7℄,[8℄ and in-
luding this one that uses spiral 
hains in the 
oloring algorithm. Simply enablean e�
ient 
oloring algorithm and prote
t us to fall in a situation similar toKempe-tangling.Again Appel and Haken argue strongly that [12℄,[13℄:...it is very unlikely that one 
ould use their proof te
hnique without the veryimportant aid of a 
omputer to show that a large number of large 
on�gurationsare redu
ible. Of 
ourse, this does not rule out the possibility of some bright youngperson devising a 
ompletely new te
hnique that would give a relatively short proofof the theorem.This paper does not prove the truth of the �rst senten
e but it does provethat the se
ond senten
e is wrong, not only just be
ause of the length of theproof.
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