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Abstract

The goal of this paper is to define and study a notion of fractional Brownian motion on a
Lie group. We define it as at the solution of a stochastic differential equation driven by a
linear fractional Brownian motion. We show that this process has stationary increments and
satisfies a local self-similar property. Furthermore the Lie groups for which this self-similar
property is global are characterized .
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1 Introduction

Since the seminal works of Itô [13], Hunt [12], and Yosida [29], it is well known that the (left)
Brownian motion on a Lie group G appears as the solution of a stochastic differential equation
in the Stratonovitch sense

dXt =
d
∑

i=1

Vi(Xt) ◦ dBi
t, t ≥ 0, (1.1)

where V1, ..., Vd are left-invariant vector fields on G and where (Bt)t≥0 is a Brownian motion;
for further details on this, we also refer to [26]. In this paper we investigate the properties of
the solution of an equation of the type (1.1) when the driving Brownian motion is replaced by
a fractional Brownian motion with parameter H. When H 6= 1/2, fractional Brownian motion
is neither a semimartingale neither a Markov process. Nevertheless, there have been numerous
attempts to define a notion of differential equations driven by fractional Brownian motion. One
dimensional differential equations can be solved using a Doss-Sussmann aproach for any values
of the parameter H as in the work of Nourdin, [22]. The situation is quite different in the
multidimensional case. When the Hurst parameter is greater than 1/2 existence and uniqueness
of the solution are obtained by Zähle in [31] or Nualart-Rascânu in [24].

In the case H < 1
2 , since fractional Brownian motion with Hurst index H has a modification

with sample paths α Hölder continuous for any α < H, it falls into the framework of rough paths
theory. Rough paths theory was introduced by Lyons in [19] and further developed in [20], see
also [17] and the references therein. Let us give few words on it. Let x be a C1 by steps path on
[0, 1] with values in Rδ . The geometric smooth functional over x of order p is X = (1, ..., Xp)
where

Xi
s,t =

∫

s<s1<...<si<t
dxs1

⊗ · · · ⊗ dxsi
, 0 ≤ s < t ≤ 1, i = 1, ..., p.

On geometric smooth functional Lyons consider the following Hölder distance

dα,p(X, Y ) = max
i=1,...,[p]

sup
0≤s<t≤1

(∣

∣Xi
s,t − Y i

s,t

∣

∣

V ⊗i

|t − s|iα

)1/i

,

where |.| is a compatible norm with the tensor product. The set of geometric functionals, ΩG(Rδ)

is the closure of geometric smooth functional with respect to dα,[ 1

α
]. Let now V1, ..., Vδ be C [ 1

α
]+2

vector fields on Rn, y be the solution of the ordinary equation

y(t) = y0 +
δ
∑

i=1

∫ t

0
Vi(y(t))dxi

t, t ∈ [0, 1],

and Y be the geometric smooth functional over y. The Itô map is then defined on the set of
geometric smooth functionals by IV1,...,Vδ ,y0

(X) = Y. The fundamental universal limit theorem
of rough paths theory (see [20]), asserts that the Itô map is continuous with respect to dα,[ 1

α
]

and has an unique continuous extension to ΩG(Rδ) denoted again by IV1,...,Vδ ,y0
.

Let now x be an α Hölder continuous path on [0, 1] taking its values in Rδ. Assume that
there exists a geometric rough path over x, that is there exists a sequence (xm) of paths C1
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by steps on [0, 1] such that the sequence (Xm) converges in (ΩG(Rδ), dα,[ 1

α
]) to X. Here X

m

is the smooth rough path over xm. Then, y the projection of IV1,...,Vδ ,y0
(X) on Rd, that is

y(t) = IV1,...,Vd,y0
(X0,t)

1 + y0, t ∈ [0, 1] is the unique solution of

y(t) = y0 +
d
∑

i=1

∫ t

0
Vi(y(t)) ◦ dxt, t ∈ [0, 1],

in the sense of rough paths.

We can apply this to stochastic differential equations driven by fractional Brownian motions.
Indeed, let now B = (B1, ..., Bd) be a d dimensional fractional Brownian motion with Hurst
parameter H, Bm be the linear interpolation of B along the dyadic subdivision of mesh m
and B

m be the geometric smooth functional over Bm. In Coutin-Qian [8], it is proved that
the sequence (Bm) converges in (ΩG(Rd), dα,[ 1

α
]) if and only if H > 1/4. Therefore a notion of

solution is well-defined for H > 1
4 . If H = 1

2 , we recover stochastic differential equations driven
by Brownian motions in Stratonovitch sense.

Let us observe that, for solving linear stochastic differential equations driven by fractional Brow-
nian motions, an alternative approach based on the Skorohod integral ([6]) could be used (see
[23]). But for geometric purposes, the pathwise approach given by rough paths theory is much
more tractable, due to the simple form of the change of variable formula (the theory is invariant
by the action of diffeomorphism groups). Actually, even in the case of Brownian motion, these
are the Stratonovitch integrals that are used.

The paper is organized as follows.

In a first section, we show existence and uniqueness for the solution of an equation of the type
(1.1) when (Bt)t≥0 is a fractional Brownian motion with parameter H > 1

4 . The solution is
shown to have stationary increments. We also check that the solution is invariant in law by
isometries and finally, the Taylor development of the solution is obtained.

In the second section, we study the scaling properties of the solution. In the spirit of the notion
of asymptotic self-similarity studied by Kunita [14], [15], we show that the fractional Brownian
motion on the group is asymptotically self-similar with parameter H. After that, we characterize
the groups for which the scaling property is global: such groups are necessarily simply connected,
nilpotent and stratified; that is are Carnot groups.

To simplify the presentation of our results, we mainly worked in the setting of Lie groups of
matrices. Nevertheless all our results extend to general Lie groups.
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2 Fractional Brownian motion on a Lie group

Let us first recall that a d-dimensional fractional Brownian motion with Hurst parameter H ∈
(0, 1) is a Gaussian process B

Bt = (B1
t , ..., Bd

t ), t ≥ 0,

where B1, ..., Bd are d independent centered Gaussian processes with covariance function

R (t, s) =
1

2

(

s2H + t2H − |t − s|2H
)

, (s, t) ∈ [0, +∞[2.

It can be shown that such a process admits a continuous version whose paths are Hölder p
continuous, p < H. Let us observe that for H = 1

2 , B is a d dimensional Brownian motion.

On MD(R), the set of D×D real matrices , the application exp is defined by its series expansion :

expM =
∞
∑

n=0

1

n!
Mn, M ∈ MD(R).

Let G be a finite-dimensional (dimG = d) connected and closed Lie group of matrices with Lie
algebra g. That is

g = {M ∈ MD(R), exp tM ∈ G, ∀t ∈ R}.

The set g is a finite dimensional sub vector space of MD(R), stable with respect to the Lie
bracket,

[M, N ] = MN − NM, (M, N) ∈ MD(R).

It is also the tangent space of G at point 1G. We consider a basis (V1, ..., Vd) of g.

If (B1
t , ..., Bd

t )t≥0 is a d-dimensional fractional Brownian motion in Rd with Hurst parameter
H ∈ (0, 1). The process Bg defined by

Bg
t =

d
∑

i=1

Bi
tVi, t ≤ 0

shall be called the canonical fractional Brownian motion on g with respect to the basis (V1, ..., Vd).
Note that Bg can be seen as a process taking its values in RD2

.

In the remainder of this section, we assume now H > 1
4 .

Theorem 2.1. The equation

dXt = Xt ◦ dBg
t , X0 = 1G (2.2)

has a unique solution in G in the sense of rough paths of [20], denoted by X = (1, X1, X2, X3).
The first level of this solution (Xt)t≥0 = (X1

0,t)t≥0 satisfies for every s ≥ 0, (X−1
s Xt+s)t≥0 =law

(Xt)t≥0. The process (Xt)t≥0 shall be called a left fractional Brownian motion with parameter
H on G with respect to the basis (V1, ..., Vd).
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Proof. We first show the existence and the uniqueness of a solution in G according to the proof
of (35.8) of [26] in the Brownian case. Without loss of generality, we can work on the time
interval [0, 1]. First, according to Theorem 5 of [8], Equation (2.2) has a unique solution with
finite p variation for p > 1

H , taking its values in MD(R). It is denoted by X = (1, X, X2, X3).

Secondly, let Bg,m be the sequence of linear interpolation of Bg along the dyadic subdivision of
mesh m; that is if tmi = i2−m for i = 0, ..., 2m; then for t ∈ [tmi , tmi+1),

Bg,m
t = Bg

tim
+

t − tim

tmi+1 − tmi
(Bg

tmi+1
− Bg

tmi
).

Let us now denote Xm the solution of (2.2) where Bg is replaced by Bg,m, that is

dXm
t =

d
∑

k=1

Xm
t dBk,m

t Vk.

It is easily seen that for t ∈ [tmn−1, t
m
n ), n = 0, ..., 2m − 1,

Xm
t = exp

(

2m(t − tmn−1)
d
∑

k=1

(Bk
tmn−1

− Bk
tmn−1

)Vk

)

· · · exp

(

d
∑

k=1

(Bk
tm
1
− Bk

tm
0

)Vk

)

. (2.3)

Since for k = 1, ..., d, Vk ∈ g we have
∑d

k=1(B
k
tmi

− Bk
tmi−1

)Vk ∈ g, i = 1, ...., 2m and therefore

exp
(

∑d
k=1(B

k
tmi

− Bk
tmi−1

)Vk

)

∈ G. Thus, Xm takes its values in G. Now, from [8], X
m, the

geometric functional build on Xm, converges to X for the distance of 1/p Hölder in RD2

:

lim
m→∞

sup
0≤s<t≤1

‖Xm,i
s,t − Xi

s,t‖
1

i

i

|t − s|α
= 0,

where ‖.‖i is any norm on MD(R)⊗i. Since in finite dimension all norms are equivalents and
since the group G is closed, we conclude that X1

0,. = limm→∞ Xm
0,. takes is values in G.

We now show that for every s ≥ 0, the processes ((Xs)
−1Xt+s, t ≥ 0) and (Xt, t ≥ 0) have the

same law. Let us fix s ≥ 0. Once time again, the idea is to use a linear interpolation along the
dyadic subdivision of [0, 1] of mesh m and we keep the previous notations. First, let us observe
that for t ≥ s,

Xt = Xs +

∫ t

s
Xu ◦ dBg

u. (2.4)

Let us now denote (Xm,s
t )s≤t≤s+1 the solution of (2.4) where Bg is replaced by (Bg,m

s+t )0≤t≤1.
Therefore, for t ∈ [tmn−1, t

m
n ),

Xm,s
t+s = Xs exp

(

2m(t − tmn−1)
d
∑

k=1

(Bk
s+tmn

− Bk
s+tmn−1

)Vk

)

· · · exp

(

d
∑

k=1

(Bk
s+tm

1
− Bk

s+tm
0

)Vk

)

.

By using the stationarity of the increments of the Euclidean fractional Brownian motion, we get
therefore:

((Xm
s )−1Xm,s

t+s )0≤t≤1 =law (Xm
t )0≤t≤1.
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Using the Wong-Zakai theorem ( Theorem 5 of [8]) and passing to the limit, we obtain that for
every s ≥ 0, (X−1

s Xt+s)t≥0 =law (Xt)t≥0.

2

Remark 2.2. In the same way, we call the solution of the differential equation

dXt = ◦dBg
t Xt, X0 = 1G.

a right fractional Brownian motion on G. It is easily seen that if (Xt)t≥0 is a left fractional
Brownian motion on G, then (X−1

t )t≥0 is a right fractional Brownian motion on G.

Let us now turn to some examples.

Example 2.3. The first basic example is the circle. Let

S1 = {z ∈ C, | z |= 1} .

The Lie algebra of S1 is R and is generated by ∂
∂θ and the fractional Brownian motion on S1 is

given by
Xt = eiBt , t ≥ 0,

where (Bt)t≥0 is a fractional Brownian motion on R.

Example 2.4. Let us consider the Lie group SO(3), i.e. the group of 3 × 3, real, orthogonal
matrices of determinant 1. Its Lie algebra , so(3), consists of 3 × 3, real, skew-adjoint matrices.
A basis of so(3) is formed by

V1 =





0 1 0
−1 0 0
0 0 0



 , V2 =





0 0 0
0 0 1
0 −1 0



 , V3 =





0 0 1
0 0 0

−1 0 0





A left fractional Brownian motion on SO(3) is therefore given by the solution of the linear
equation

dXt = Xt ◦





0 dB1
t dB3

t

− dB1
t 0 dB2

t

− dB3
t −dB2

t 0



 , X0 = IdR3 .

This notion of fractional Brownian motion on a Lie group is invariant by isometries, so that
the law is invariant by an orthonormal change of basis. More precisely, let us consider the
scalar product on g that makes the basis V1, ..., Vd orthonormal. This scalar product defines a
Riemannian structure on G for which the left action is an action by isometries. We have the
following proposition:

Proposition 2.5. Let Ψ : G → G be a Lie group morphism such that dΨ1G
(differential of Ψ

at 1G) is an isometry and let (Xt)t≥0 be the left fractional Brownian motion on G as defined in
Theorem 2.1. We have:

(Ψ(Xt))t≥0 =law (Xt)t≥0.
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Proof. As in the proof of Theorem 2.1., let us introduce the approximation defined for t ∈
[tmn−1, t

m
n ), n = 0, ..., 2m − 1, by

Xm
t = exp

(

2m(t − tmn−1)
d
∑

k=1

(Bk
tmn−1

− Bk
tmn−1

)Vk

)

· · · exp

(

d
∑

k=1

(Bk
tm
1
− Bk

tm
0

)Vk

)

.

Since Ψ is a Lie group morphism, we have for every u ∈ g, Ψ(eu) = edΨ1G
(u), therefore for

t ∈ [tmn−1, t
m
n ), n = 0, ..., 2m − 1,

Ψ(Xm
t ) = exp

(

2m(t − tmn−1)
d
∑

k=1

(Bk
tmn−1

− Bk
tmn−1

)dΨ1G
(Vk)

)

· · · exp

(

d
∑

k=1

(Bk
tm
1
− Bk

tm
0

)dΨ1G
(Vk)

)

.

Thus, because of the orthogonal invariance of the Euclidean fractional Brownian motion,

(Ψ(Xm
t ))t≥0 =law (Xm

t )t≥0,

and the result follows from Theorem 5 of [8]. 2

Remark 2.6. If G is compact then there exists a bi-invariant Riemann metric and so, if (Xt)t≥0

denotes a left fractional Brownian motion for this bi-invariant metric, from the previous propo-
sition, we get that for every g ∈ G,

(gXtg
−1)t≥0 =law (Xt)t≥0.

If the group G is nilpotent then we have a closed formula for the left fractional Brownian motion
on G that extends the well-known formula for the Brownian motion on a nilpotent group (see
by e.g. [1], [5] or [28]).

Let us introduce some notations: For k ≥ 1,

•
∆k[s, t] = {(t1, ..., tk) ∈ [s, t]k, t1 < ... < tk}, s < t;

• If I = (i1, ...ik) ∈ {1, ..., d}k is a word with length k,

∫

∆k[0,t]
◦dBI =

∫

0<t1<...<tk≤t
◦dBi1

t1
... ◦ dBik

tk
;

• We denote Sk the group of the permutations of the index set {1, ..., k} and if σ ∈ Sk, we
denote for a word I = (i1, ..., ik), σ · I the word (iσ(1), ..., iσ(k));

• If I = (i1, ..., ik) ∈ {1, ..., d}k is a word, we denote by VI the Lie commutator defined by

VI = [Vi1 , [Vi2 , ..., [Vik−1
, Vik ]...];

• If σ ∈ Sk, we denote e(σ) the cardinality of the set

{j ∈ {1, ..., k − 1}, σ(j) > σ(j + 1)};
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• Finally, if I = (i1, ..., ik) ∈ {1, ..., d}k is a word

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2

(

k − 1
e(σ)

)

∫

∆k[0,t]
◦dBσ−1·I .

Proposition 2.7. Assume that G is a nilpotent group then:

Xt = exp





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tVI



 , t ≥ 0,

where the above sum is actually finite and where (Xt)t≥0 is the left fractional Brownian motion
defined as in Theorem 2.1.

Proof. Let Bg,m be the sequel of linear interpolation of Bg along the dyadic subdivision of mesh
m. Let us now denote Xm the solution of (2.2) where Bg is replaced by Bg,m. As already seen
in (2.3) for t ∈ [tmn−1, t

m
n ),

Xm
t = exp

(

2m(t − tmn−1)
d
∑

k=1

(Bk
t − Bk

tmn−1
)Vk

)

· · · exp

(

d
∑

k=1

(Bk
tm
1
− Bk

tm
0

)Vk

)

.

Now we use the Baker-Campbell-Hausdorff formula in nilpotent Lie groups (see [1], [5], [27]) to
write the previous product of exponentials under the form

Xm
t = exp





+∞
∑

k=1

∑

I=(i1,...,ik)

ΛI(B
m)tVI



 ,

where

ΛI(B
m)t =

∑

σ∈Sk

(−1)e(σ)

k2

(

k − 1
e(σ)

)

∫

∆k[0,t]
◦dBm,σ−1·I .

>From [8] Theorem 2, in the distance of p variation, with p > 1
H , and if the length of the word

I is less than 3,

(ΛI(B
m)t)t≤0 →m→+∞ ΛI(B)t≤0. (2.5)

By using Theorem 3.1.3 of [20], the convergence in (2.5) can actually be extended to words of
any length. Therefore from [8],

Xt = exp





+∞
∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI



 , t ≥ 0.

2

Remark 2.8. Since exp is a local diffeomorphism, there exists a positive strictely random vari-
able T such that Proposition 2.7 may be true on non nilpotent group for t ≤ T (see [3] and [5]
for the Brownian case).
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Example 2.9. In a two-step nilpotent group, that if is all brackets with length more than two
are zero, we have therefore

Xt = exp





d
∑

i=1

Bi
tVi +

1

2

∑

1≤i<j≤d

(∫ t

0
Bi

s ◦ dBj
s − Bj

s ◦ dBi
s

)

[Vi, Vj ]



 , t ≤ 0.

Example 2.10. The Heisenberg group H is the set of 3 × 3 matrices:





1 x z
0 1 y
0 0 1



 , x, y, z ∈ R.

The Lie algebra of H is spanned by the matrices

D1 =





0 1 0
0 0 0
0 0 0



 , D2 =





0 0 0
0 0 1
0 0 0



 and D3 =





0 0 1
0 0 0
0 0 0



 ,

for which the following equalities hold

[D1, D2] = D3, [D1, D3] = [D2, D3] = 0.

Consider now the solution of the equation

dXt = Xt(D1dB1
t + D2dB2

t + D3dB3
t ), X0 = 1,

where (B1
t , B2

t , B3
t )t≥0 is a three-dimensional fractional Brownian motion with Hurst parameter

H > 1
4 . It is easily seen that

Xt =







1 B1
t

1
2

(

B1
t B2

t + 2B3
t +

∫ t
0 B1

s ◦ dB2
s − B2

s ◦ dB1
s

)

0 1 B2
t

0 0 1






, t ≥ 0

is a fractional Brownian motion on H.

We conclude this section with the Taylor development of fractional Brownian motion on a Lie
group, as in [2]. Let us observe that similar type of development is obtained in [10].

Proposition 2.11. Under assumptions of Theorem 2.1, almost surely,

Xt = 1 +
∞
∑

k=1

∑

I∈{1,...,d}k

∫

∆k[0,t]
◦dBIVi1 ....Vik,

where the convergence of the series of functions of the right member holds for the p variation
topology and the uniform norm of function on compact of R+.
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Proof. We work on [0, 1] without loss of generality. Let Bg,m denote again the sequel of linear
interpolation of Bg along the dyadic subdivision of mesh m; that is if tmi = i2−m for i = 0, ..., 2m;
then for t ∈ [tmi , tmi+1),

Bg,m
t = Bg

tmi
+

t − tim

tmi+1 − tmi
(Bg

tmi+1
− Bg

tmi
).

Let p > 1/H, according to Theorem 4 of [8],
(

1, (
∫

∆k[s,t] dBm,I)I,|I|≤3

)

0≤s≤t≤1
converges in the

distance of the p variation to
(

1, (
∫

∆k[s,t] dBm,I)I,|I|≤3

)

0≤s≤t≤1
. That means that, almost surely,

sup
Π

∑

j

3
∑

k=0

∑

I,|I|=k

∣

∣

∣

∣

∣

∫

∆k[tj−1,tj ]
dBm,I −

∫

∆k[tj−1,tj ]
◦dBI

∣

∣

∣

∣

∣

p/k

,

converges to 0 when m goes to infinity, where supπ runs over all finite subdivisions of [0, 1].
According to Proposition 3.3.3 of [20] page 51, almost surely there exists a subsequence (ml)
and a control ω such that for all 0 ≤ s ≤ t ≤ 1, I word of length |I| ≤ 3, k ∈ N,

∣

∣

∣

∣

∣

∫

∆k[s,t]
dBml,I

∣

∣

∣

∣

∣

≤
1

β(k : p)!
ω(s, t)k/p,

∣

∣

∣

∣

∣

∫

∆k[s,t]
◦dBI

∣

∣

∣

∣

∣

≤
1

β(k : p)!
ω(s, t)k/p,

∣

∣

∣

∣

∣

∫

∆k[s,t]
dBml,I −

∫

∆k[s,t]
◦dBI

∣

∣

∣

∣

∣

≤
1

β(k : p)!
2−lω(s, t)k/p,

where k : p = [k/p] and β > p2(1 +
∑∞

r=3(
2

r−2)([p]+1)/p). Recall that ω is a control if and
only if ω is continuous, super-additive on {0 ≤ s ≤ t ≤ 1} taking its values in [0, +∞[ and
ω(t, t) = 0, t ∈ [0, 1]. Moreover according Theorem 3.1.3, for all 0 ≤ s ≤ t ≤ 1, I word, k ∈ N,

∣

∣

∣

∣

∣

∫

∆k[s,t]
dBml,I

∣

∣

∣

∣

∣

≤
1

β(k : p)!
ω(s, t)k/p,

∣

∣

∣

∣

∣

∫

∆k[s,t]
◦dBI

∣

∣

∣

∣

∣

≤
1

β(k : p)!
ω(s, t)k/p, (2.6)

∣

∣

∣

∣

∣

∫

∆k[s,t]
dBml,I −

∫

∆k[s,t]
◦dBI

∣

∣

∣

∣

∣

≤
1

β(k : p)!
2−lω(s, t)k/p.

Then the processes Y l, l ∈ N, and Y ,

Yt = 1 +
∞
∑

k=1

∑

I=(i1,...,ik)

∫

∆k[0,t]
◦dBIVi1 ....Vik,

Y l
t = 1 +

∞
∑

k=1

∑

I=(i1,...,ik)

∫

∆k[0,t]
dBml,IVi1 ....Vik, t ∈ [0, 1],
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are well defined. First, since Bg,m is C1 by piece, Y l is the solution of

dXt = XtdBg,ml , X0 = 1,

and therefore Y l = Xml , l ∈ N. Secondly, thanks to Theorem 5 of [8], Xml = Y l converges to
X in the distance of p variation, for p > 1/H. We conclude that Y = X, almost surely. 2

3 Self-similarity of a fractional Brownian motion on a Lie group

Recall that for the Euclidean fractional Brownian motion, we have

(B1
ct, ..., B

d
ct)t≥0 =law (cHB1

t , ..., cHBd
t )t≥0

This property is called the scaling property of the fractional Brownian motion. In this section,
we are going to study scaling properties of fractional Brownian motions on a Lie group.

As in the previous section, let G be a connected Lie and closed group (of matrices) with Lie
algebra g. Let V1, ..., Vd be a basis of g and denote by (Xt)t≥0 the solution of the equation

dXt = Xt

(

d
∑

i=1

Vi ◦ dBi
t

)

, X0 = 1G,

where (Bt)t≥0 is a d-dimensional fractional Brownian with Hurst parameter H > 1
4 .

3.1 Local self-similarity

First, we notice that for (Xt)t≥0 we always have an asymptotic scaling property in the following
sense:

Proposition 3.1. Under the assumption of Theorem 2.1, when c → 0, c > 0, the sequence of
processes

(

1
c (Xct − 1G)

)

0≤t
converges in law to β a one dimensional Brownian motion. More-

over, if f : G → R is a C2 map such that
∑d

i=1(Vif)(1G)2 6= 0; then, when c → 0, c > 0, the
sequence of processes

(

1
cH (f(Xct) − f(1G))

)

0≤t≤1
converges in law to (aβt)0≤t≤1 where (βt)t≥0

is a one-dimensional fractional Brownian motion and

a =

√

√

√

√

d
∑

i=1

(Vif)(1G)2.

Proof. >From Proposition 2.11,

Xct − 1G

cH
=

1

cH
Bg

ct +
1

cH
R(ct) t ≥ 0,

where the remainder term R is given by

R(t) =

∞
∑

k=2

∑

I∈{1,...,d}k

∫

∆k[0,t]
◦dBIVi1 ...Vik ∈ g,
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Let us observe that the convergence of the above series stems from (2.6). Using the scaling
property of fractional Brownian motion we get that (c−HBg

ct, c
−HR(ct))t≥0 has the same law as



Bg
t , cH

∞
∑

k=2

c(k−2)H
∑

I=(i1,...,ik)

∫

∆k[0,t]
dBIVi1 ...Vik





t≤0

.

Again, from (2.6), almost surely,

lim
c→0

sup
t∈[0,1]

‖cH
∞
∑

k=2

c(k−2)H
∑

I=(i1,...,ik)

∫

∆k[0,t]
dBIVi1 ...Vik‖g = 0.

Thus, (c−HBg
ct, c

−HR(ct))t≥0 converges in law to (Bg
t , 0)t≥0 when c goes to 0 and (Xct−1G

cH )t≥0

converges in law to (Bg
t )t≥0 when c goes to 0.

Now, by using the Taylor expansion of f between Xt and 1G, two points of M(RD) seen as
R⊗D2

,

f(Xct) − f(1G)

cH
=

D
∑

i,j=1

∂f

∂xi,j
(1G)

(Xct − 1)i,j

cH
+

D
∑

i,j,k,l=1

c−2HRi,j(ct)Rk,l(ct)

∫ 1

0

∂f2

∂xk,l
(θXs)dθ.

Since, (c−HBg
ct, c

−HR(ct))t≥0 converges in law to (Bg
t , 0)t≥0 when c goes to 0, and ∂2f

∂xi,j∂xk,l

are continuous, we deduce that when c → 0, c > 0, the sequence of processes
(

1
cH (f(Xct) − f(1G))

)

0≤t≤1
converges in law to (aβt)0≤t≤1 where (βt)t≥0 is a one-dimensional

fractional Brownian motion and

a =

√

√

√

√

d
∑

i=1

(Vif)(1G)2.

2

Remark 3.2. Slightly more generally, by using the Taylor expansion proved in (2.6), we obtain
in the same way: Let f : G → R be a smooth map such that there exist k ≥ 1 and (i1, ..., ik) ∈
{1, ..., d}k that satisfy

(Vi1 · · ·Vikf)(1G) 6= 0.

Denote n the smallest k that satisfies the above property. Then, when c → 0, c > 0, the sequence
of processes

(

1
cnH (f(Xct) − f(1G))

)

0≤t≤1
converges in law to (βt)0≤t≤1 where (βt)t≥0 is a process

such that
(βct)t≥0 =law (cnHβt)t≥0.

3.2 Global self-similarity

Despite the local self-similar property, as we will see, in general there is no global scaling property
for the fractional Brownian motion on a Lie group. Let us first briefly discuss what should be a
good notion of scaling in a Lie group (see also [14] and [15]). If we can find a family a map ∆c,
c > 0, such that

(Xct)t≥0 =law (∆cXt)t≥0 ,
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first of all it is natural to require that the map c → ∆c is continuous and limc→0 ∆c = 1G.
Then by looking at (Xc1c2t)t≥0, we will also naturally ask that ∆c1c2 = ∆c1 ◦∆c2 . Finally, since

(X−1
s Xt+s)t≥0 =law (Xt)t≥0, we will also ask that ∆c is a Lie group automorphism.

The following theorem shows that the existence of such a family ∆c on G only holds if the group
is (Rd, +). This is partly due to the following lemma of Lie group theory that says that the
existence of a dilation on G imposes strong topological and algebraic restrictions:

Lemma 3.3. (See [16]) Assume that there exists a Lie group automorphism Ψ : G → G such
that dΨ1G

(differential of Ψ at 1G) has all its eigenvalues of modulus > 1, then G is a simply
connected nilpotent Lie group.

We can now show:

Theorem 3.4. There exists a family of Lie group automorphisms ∆t : G → G, t > 0, such
that:

1. The map t → ∆t is continuous and limt→0 ∆t = 1G;

2. For t1, t2 ≥ 0, ∆t1t2 = ∆t1 ◦ ∆t2;

3. (Xct)t≥0 =law (∆cXt)t≥0;

if and only if the group G is isomorphic to (Rd, +).

Proof. If G is isomorphic to (Rd, +), (Xt)t≥0 is a Euclidean fractional Brownian motion and
the result is trivial.

We prove now the converse statement. Let us first show that the existence of the family (∆t)t>0

implies that G is a simply connected nilpotent Lie group.

Let us denote
δc = d∆c(1G),

the differential map of ∆c at 1G and observe that δc is a Lie algebra automorphism g → g, that
satisfies ∆c(expM) = exp δc(M), M ∈ g. The map f : t → δet is a map from R onto the set of
linear maps g → g that is continuous. We have furthermore the property

f(t + s) = f(t)f(s).

Consequently there exists a linear map φ : g → g such that

δc = Exp(φ ln c), c > 0,

where Exp denotes here the exponential of linear maps (and not the exponential map g → G

which is denoted exp). Since δc is a linear application on the finite dimensional vector space g,
for c∗ > 1 close enough from 1,

φ ln c∗ = Ln(IL(g) + δc∗ − IL(g)),

where L(g) is the set of linear functions from g into itself, IL(g) is the identity map from g

into itself, and for ϕ ∈ L(g) in a neighbour of 0 Ln(IL(g) + ϕ) =
∑∞

n=1
(−1)n+1

n ϕ◦(n). If α is
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an eigenvalue of δc∗ , then lnα is an eigenvalue of φ ln c∗. Let us furthermore observe that if
λ ∈ Sp(φ) is an eigenvalue of φ, then eλ ln c is an eigenvalue of δc, therefore ℜλ > 0 because
limc→0 ∆c = 1G which implies limc→0 δc = 0. Therefore, |α| > 1 from Lemma 3.3 with Ψ = δc∗ ,
G has to be a simply connected nilpotent Lie group.

We deduce from Proposition 2.7 that

Xt = exp





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tVI



 , t ≥ 0,

where the above sum is actually finite and

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2

(

k − 1
e(σ)

)

∫

∆k[0,t]
◦dBσ−1·I . (3.7)

Due to the assumption that
(Xt)t≥0 =law (∆cX t

c
)t≥0,

we deduce that


exp





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tVI









t≥0

=law



exp





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B) t
c
(δcV )I









t≥0

.

But since the group G is nilpotent and simply connected the exponential map is a diffeomor-
phism, therefore





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tVI





t≥0

=law





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B) t
c
(δcV )I





t≥0

.

Let us now observe that due to the scaling property of the fractional Brownian motion




+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B) t
c
(δcV )I





t≥0

=law





+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)t
1

cH|I|
δcVI





t≥0

,

where | I | is the length of the word I. Thus, for every c > 0,




+∞
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tVI





t≥0

=law





+∞
∑

k=1

1

ckH
δc





∑

I∈{1,...,d}k

ΛI(B)tVI









t≥0

Let us now observe that V1, ..., Vd is a basis of g, therefore all commutators are linear combina-
tions of the Vi’s and

VI =
d
∑

i=1

αi
IVi, I ∈ {1, ..., d}k, k ∈ N

∗,

δc(Vj) =
d
∑

i=1

δi,j
c Vi, j = 1, ..., d.
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The projections on Vj , j = 1, ..., d, are continuous linear maps (since g has a finite dimension),
therefore





N
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tα
j
I





t≥0,j=1,...,d

has the same law as




N
∑

k=1

ckH
∑

I∈{1,...,d}k

ΛI(B)t

d
∑

i=1

αj
Iδ

i,j
c





t≥0

,

where N is the degree of nilpotence of G. We take now expectation on both sides and observe
that the maps t 7→ E(

∑N
k=1 ckH

∑

I=(i1,...,ik), i1≤...≤ik
ΛI(B)t), j = 1, ..., d are polynomial in t2H ,

with coefficient associated to t2H given by

1 = c−2H
d
∑

i=1

(δi,j
c )2, j = 1, ..., d.

Since the family of linear applications (c−Hδc)c>0 is bounded, there exists a subsequence (cl)l∈N

and a matrix (α̃j
i )i,j=1,..,d such that liml→∞ cl = ∞, and for i, j = 1, ..., d, liml→∞ c−H

l δi,j
cl

= α̃j
i .

Then,




N
∑

k=1

ckH
l

∑

I∈{1,...,d}k

ΛI(B)t

d
∑

i=1

αj
Iδ

i,j
cl





t≥0, j=1,...,d

,

converges in law to the Gaussian process (
∑d

i=1 Bi
tα̃

j
i )t≥0,j=1,...,d. For j = 1, ..., d, by using the

scaling property of fractional Brownian motion, we observe that the map

E









N
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tα
j
I





2



is a polynomial with degree 1 in t2H . The leading coefficient of t4H is given by

E









∑

I=(i1,i2)

ΛI(B)1α
j
I





2

 .

We conclude therefore

E









∑

I=(i1,i2)

ΛI(B)1α
j
I





2

 = 0.

From the support theorem of [7] (Proposition 3), we conclude that for all I = (i1, i2), , j = 1, ..., d,
αj

I = 0, that is VI = [Vi1 , Vi2 ] = 0. Therefore all the brackets have to be 0, that is G is
commutative. We can now conclude that G is isomorphic to (Rd, +), because so are all simply
connected and commutative Lie groups. 2
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Remark 3.5. The previous theorem in particular applies to the case of a Brownian motion, that
corresponds to H = 1

2 .

If we relax the assumption that the family (V1, ..., Vd) forms a basis of the Lie algebra g, we can
have a global scaling property in slightly more general groups than the commutative ones. Let
us first look at one example.

The Heisenberg group H is the set of 3 × 3 matrices:




1 x z
0 1 y
0 0 1



 , x, y, z ∈ R.

The Lie algebra of H is spanned by the matrices

D1 =





0 1 0
0 0 0
0 0 0



 , D2 =





0 0 0
0 0 1
0 0 0



 and D3 =





0 0 1
0 0 0
0 0 0



 ,

for which the following equalities hold

[D1, D2] = D3, [D1, D3] = [D2, D3] = 0.

Consider now the solution of the equation

dXt = Xt(D1 ◦ dB1
t + D2 ◦ dB2

t ), X0 = 1,

where (B1
t , B2

t ) is a two-dimensional fractional Brownian motion with Hurst parameter H > 1
4 .

It is easily seen that

Xt =







1 B1
t

1
2

(

B1
t B2

t +
∫ t
0 B1

s ◦ dB2
s − B2

s ◦ dB1
s

)

0 1 B2
t

0 0 1






.

Therefore (Xct)t≥0 =law (∆cXt)t≥0, where ∆c is defined by

∆c





1 x z
0 1 y
0 0 1



 =





1 cHx c2Hz
0 1 cHy
0 0 1



 .

In that case, we thus have a global scaling property whereas H is of course not commutative but
step-two nilpotent. Actually, we shall have a global scaling property in the Lie groups that are
called the Carnot groups. Let us recall the definition of a Carnot group.

Definition 3.6. A Carnot group of step (or depth) N is a simply connected Lie group G whose
Lie algebra can be written

V1 ⊕ ... ⊕ VN ,

where
[Vi,Vj ] = Vi+j

and
Vs = 0, for s > N.
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Example 3.7. Consider the set Hn = R
2n × R endowed with the group law

(x, α) ⋆ (y, β) =

(

x + y, α + β +
1

2
ω(x, y)

)

,

where ω is the standard symplectic form on R
2n, that is

ω(x, y) = xt

(

0 −In

In 0

)

y.

On hn the Lie bracket is given by

[(x, α), (y, β)] = (0, ω(x, y)) ,

and it is easily seen that
hn = V1 ⊕ V2,

where V1 = R
2n×{0} and V2 = {0}×R. Therefore Hn is a Carnot group of depth 2 and observe

that H1 is isomorphic to the Heisenberg group.

Notice that the vector space V1, which is called the basis of G, Lie generates g, where g denotes
the Lie algebra of G. Since G is step N nilpotent and simply connected, the exponential map
is a diffeomorphism. On g we can consider the family of linear operators δt : g → g, t ≥ 0
which act by scalar multiplication ti on Vi. These operators are Lie algebra automorphisms due
to the grading. The maps δt induce Lie group automorphisms ∆t : G → G which are called
the canonical dilations of G. Let us now take a basis U1, ..., Ud of the vector space V1. The
vectors Ui’s can be seen as left invariant vector fields on G so that we can consider the following
stochastic differential equation on G:

dYt =
d
∑

i=1

∫ t

0
Ui(Ys) ◦ dBi

s, t ≥ 0, (3.8)

which is easily seen to have a unique solution associated with the initial condition Y0 = 1G. We
have then the following global scaling property:

Proposition 3.8.

(Yct)t≥0 =law (∆cH Yt)t≥0.

Proof. We keep the notations introduced before the proof of Theorem 2.7. From Theorem 2.7,
we have

Yt = exp





N
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tUI



 , t ≥ 0.

Therefore,

(Yct)t≥0 =law



exp





N
∑

k=1

cH|I|
∑

I∈{1,...,d}k

ΛI(B)tUI









t≥0

.
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Since

exp





N
∑

k=1

cH|I|
∑

I∈{1,...,d}k

ΛI(B)tUI



 = exp





N
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)t(δcH UI)





= ∆cH exp





N
∑

k=1

∑

I∈{1,...,d}k

ΛI(B)tUI



 ,

we conclude
(Yct)t≥0 =law (∆cH Yt)t≥0.

2

The previous proposition admits a counterpart.

Theorem 3.9. Let G be a connected Lie group (of matrices) with Lie algebra g. Let V1, ..., Vd

be a family of g. Consider now the solution of the equation

dXt = Xt

(

d
∑

i=1

Vi ◦ dBi
t

)

, X0 = 1G.

Assume that there exists a family of Lie group automorphisms ∆t : G → G, t > 0, such that:

1. The map t → ∆t is continuous and limt→0 ∆t = 1G;

2. For t1, t2 ≥ 0, ∆t1t2 = ∆t1 ◦ ∆t2;

3. (Xct)t≥0 =law (∆cXt)t≥0;

Then the Lie subgroup H that is generated by eV1 , ..., eVd is a Carnot group.

Proof.

We can readily follow the lines of the proof of Theorem 3.4, so that we do not enter into details.
First we obtain that H has to be a simply connected nilpotent group and that for every c > 0,




+∞
∑

k=1

∑

I=(i1,...,ik), i1≤...≤ik

ΛI(B)tVI





t≥0

=law





+∞
∑

k=1

1

ckH
δc





∑

I=(i1,...,ik), i1≤...≤ik

ΛI(B)tVI









t≥0

,

where δc is the differential map of ∆c at 1G. For k ≥ 1, we denote Vk the linear space generated
by the set of commutators:

{VI , | I |= k} .

By letting c → +∞ and c → 0 and by using the support theorem of [7], we obtain that c−kHδc is
bounded on Vk for c → +∞ and c → 0. Since c−kHδc = Exp((φ − kHId) ln c), for some matrix
φ, we conclude

h =

+∞
⊕

k=1

Vk,

where h is the Lie algebra of H. This proves that H is a Carnot group. 2
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